IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2001.06118.html
   My bibliography  Save this paper

Distributional synthetic controls

Author

Listed:
  • Florian Gunsilius

Abstract

This article extends the widely-used synthetic controls estimator for evaluating causal effects of policy changes to quantile functions. The proposed method provides a geometrically faithful estimate of the entire counterfactual quantile function of the treated unit. Its appeal stems from an efficient implementation via a constrained quantile-on-quantile regression. This constitutes a novel concept of independent interest. The method provides a unique counterfactual quantile function in any scenario: for continuous, discrete or mixed distributions. It operates in both repeated cross-sections and panel data with as little as a single pre-treatment period. The article also provides abstract identification results by showing that any synthetic controls method, classical or our generalization, provides the correct counterfactual for causal models that preserve distances between the outcome distributions. Working with whole quantile functions instead of aggregate values allows for tests of equality and stochastic dominance of the counterfactual- and the observed distribution. It can provide causal inference on standard outcomes like average- or quantile treatment effects, but also more general concepts such as counterfactual Lorenz curves or interquartile ranges.

Suggested Citation

  • Florian Gunsilius, 2020. "Distributional synthetic controls," Papers 2001.06118, arXiv.org, revised Dec 2021.
  • Handle: RePEc:arx:papers:2001.06118
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2001.06118
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sylvia Allegretto & Arindrajit Dube & Michael Reich & Ben Zipperer, 2017. "Credible Research Designs for Minimum Wage Studies," ILR Review, Cornell University, ILR School, vol. 70(3), pages 559-592, May.
    2. Olli Ropponen, 2011. "Reconciling the evidence of Card and Krueger (1994) and Neumark and Wascher (2000)," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 1051-1057, September.
    3. Florian Gunsilius & Susanne Schennach, 2023. "Independent Nonlinear Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(542), pages 1305-1318, April.
    4. Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021. "Synthetic Difference-in-Differences," American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.
    5. Newey, Whitney K, 1991. "Uniform Convergence in Probability and Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 59(4), pages 1161-1167, July.
    6. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    7. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    8. Giovanni Peri & Vasil Yasenov, 2019. "The Labor Market Effects of a Refugee Wave: Synthetic Control Method Meets the Mariel Boatlift," Journal of Human Resources, University of Wisconsin Press, vol. 54(2), pages 267-309.
    9. Ekaterina Jardim & Mark C. Long & Robert Plotnick & Emma van Inwegen & Jacob Vigdor & Hilary Wething, 2017. "Minimum Wage Increases, Wages, and Low-Wage Employment: Evidence from Seattle," NBER Working Papers 23532, National Bureau of Economic Research, Inc.
    10. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    11. Hua Zhou & Lexin Li & Hongtu Zhu, 2013. "Tensor Regression with Applications in Neuroimaging Data Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 540-552, June.
    12. Scott Cunningham & Manisha Shah, 2018. "Decriminalizing Indoor Prostitution: Implications for Sexual Violence and Public Health," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(3), pages 1683-1715.
    13. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    14. Nikolay Doudchenko & Guido W. Imbens, 2016. "Balancing, Regression, Difference-In-Differences and Synthetic Control Methods: A Synthesis," NBER Working Papers 22791, National Bureau of Economic Research, Inc.
    15. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    16. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, February.
    17. Kosuke Imai & In Song Kim, 2019. "When Should We Use Unit Fixed Effects Regression Models for Causal Inference with Longitudinal Data?," American Journal of Political Science, John Wiley & Sons, vol. 63(2), pages 467-490, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Mellace & Alessandra Pasquini, 2022. "Mediation Analysis Synthetic Control," Temi di discussione (Economic working papers) 1389, Bank of Italy, Economic Research and International Relations Area.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gharehgozli, Orkideh, 2021. "An empirical comparison between a regression framework and the Synthetic Control Method," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 70-81.
    2. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    3. Bruno Ferman & Cristine Pinto, 2021. "Synthetic controls with imperfect pretreatment fit," Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
    4. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    5. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    6. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
    7. Jason Poulos & Andrea Albanese & Andrea Mercatanti & Fan Li, 2021. "Retrospective causal inference via matrix completion, with an evaluation of the effect of European integration on cross-border employment," Papers 2106.00788, arXiv.org.
    8. Lea Bottmer & Guido Imbens & Jann Spiess & Merrill Warnick, 2021. "A Design-Based Perspective on Synthetic Control Methods," Papers 2101.09398, arXiv.org, revised Jul 2023.
    9. Claudia Shi & Dhanya Sridhar & Vishal Misra & David M. Blei, 2021. "On the Assumptions of Synthetic Control Methods," Papers 2112.05671, arXiv.org, revised Dec 2021.
    10. Jason Poulos & Shuxi Zeng, 2021. "RNN‐based counterfactual prediction, with an application to homestead policy and public schooling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1124-1139, August.
    11. Alberto Abadie & Jaume Vives-i-Bastida, 2022. "Synthetic Controls in Action," Papers 2203.06279, arXiv.org.
    12. Niklas Potrafke & Kaspar Wuthrich, 2020. "Green governments," Papers 2012.09906, arXiv.org, revised Mar 2022.
    13. Ruoxuan Xiong & Susan Athey & Mohsen Bayati & Guido Imbens, 2019. "Optimal Experimental Design for Staggered Rollouts," Papers 1911.03764, arXiv.org, revised Sep 2023.
    14. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    15. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    16. Irene Botosaru & Bruno Ferman, 2019. "On the role of covariates in the synthetic control method," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 117-130.
    17. Niklas Potrafke & Fabian Ruthardt & Kaspar Wuthrich, 2020. "Protectionism and economic growth: Causal evidence from the first era of globalization," Papers 2010.02378, arXiv.org, revised Mar 2022.
    18. Peter Backus & Thien Nguyen, 2021. "The Effect of the Sex Buyer Law on the Market for Sex, Sexual Health and Sexual Violence," Economics Discussion Paper Series 2106, Economics, The University of Manchester.
    19. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    20. Cummins Joseph & Miller Douglas L. & Smith Brock & Simon David, 2024. "Matching on Noise: Finite Sample Bias in the Synthetic Control Estimator," Journal of Econometric Methods, De Gruyter, vol. 13(1), pages 67-95, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2001.06118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.