IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1912.10343.html
   My bibliography  Save this paper

Design of High-Frequency Trading Algorithm Based on Machine Learning

Author

Listed:
  • Boyue Fang
  • Yutong Feng

Abstract

Based on iterative optimization and activation function in deep learning, we proposed a new analytical framework of high-frequency trading information, that reduced structural loss in the assembly of Volume-synchronized probability of Informed Trading ($VPIN$), Generalized Autoregressive Conditional Heteroscedasticity (GARCH) and Support Vector Machine (SVM) to make full use of the order book information. Amongst the return acquisition procedure in market-making transactions, uncovering the relationship between discrete dimensional data from the projection of high-dimensional time-series would significantly improve the model effect. $VPIN$ would prejudge market liquidity, and this effectiveness backtested with CSI300 futures return.

Suggested Citation

  • Boyue Fang & Yutong Feng, 2019. "Design of High-Frequency Trading Algorithm Based on Machine Learning," Papers 1912.10343, arXiv.org.
  • Handle: RePEc:arx:papers:1912.10343
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1912.10343
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sanford J. Grossman & Merton H. Miller, 1988. "Liquidity and Market Structure," NBER Working Papers 2641, National Bureau of Economic Research, Inc.
    2. Benston, George J. & Hagerman, Robert L., 1974. "Determinants of bid-asked spreads in the over-the-counter market," Journal of Financial Economics, Elsevier, vol. 1(4), pages 353-364, December.
    3. Janchung Wang, 2011. "Price Behavior of Stock Index Futures: Evidence from the FTSE Xinhua China A50 and H-Share Index Futures Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 47(0), pages 61-77, January.
    4. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    5. repec:bla:jfinan:v:43:y:1988:i:3:p:617-37 is not listed on IDEAS
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. David Easley & Marcos M. López de Prado & Maureen O'Hara, 2012. "Flow Toxicity and Liquidity in a High-frequency World," The Review of Financial Studies, Society for Financial Studies, vol. 25(5), pages 1457-1493.
    8. Taufiq Choudhry & Mohammad Hasan & Yuanyuan Zhang, 2019. "Forecasting the daily dynamic hedge ratios in emerging European stock futures markets: evidence from GARCH models," International Journal of Banking, Accounting and Finance, Inderscience Enterprises Ltd, vol. 10(1), pages 67-100.
    9. William M. Cheung & Robin K. Chou & Adrian C.H. Lei, 2015. "Exchange‐Traded Barrier Option and VPIN: Evidence from Hong Kong," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(6), pages 561-581, June.
    10. Easley, David & O'Hara, Maureen, 1992. "Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
    11. Yan Yan & Ouyang Hongbing, 2018. "Dynamic probability of informed trading and price movements: evidence from the CSI300 index futures market," Applied Economics Letters, Taylor & Francis Journals, vol. 25(14), pages 998-1003, August.
    12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    2. Sylwia Nowak, 2008. "How Do Public Announcements Affect The Frequency Of Trading In U.S. Airline Stocks?," CAMA Working Papers 2008-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    3. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
    4. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    5. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    6. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    7. Ben Tims & Ronald Mahieu, 2006. "A Range-Based Multivariate Stochastic Volatility Model for Exchange Rates," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 409-424.
    8. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    9. Mazza, Paolo, 2015. "Price dynamics and market liquidity: An intraday event study on Euronext," The Quarterly Review of Economics and Finance, Elsevier, vol. 56(C), pages 139-153.
    10. Do, Hung Xuan & Nepal, Rabindra & Jamasb, Tooraj, 2020. "Electricity market integration, decarbonisation and security of supply: Dynamic volatility connectedness in the Irish and Great Britain markets," Energy Economics, Elsevier, vol. 92(C).
    11. Ping-Hung Chou & Pei-Shan Wu & Teng-Tsai Tu, 2014. "The Impact of Trader Behavior on Options Price Volatility," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 4(4), pages 503-516, April.
    12. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    13. Pandey, Ajay, 2003. "Modeling and Forecasting Volatility in Indian Capital Markets," IIMA Working Papers WP2003-08-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    14. Carlos Alberto Piscarreta Pinto Ferreira, 2022. "Revisiting The Determinants Of Sovereign Bond Yield Volatility," Working Papers REM 2022/0241, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    15. David McMillan & Alan Speight, 2006. "Heterogeneous information flows and intra-day volatility dynamics: evidence from the UK FTSE-100 stock index futures market," Applied Financial Economics, Taylor & Francis Journals, vol. 16(13), pages 959-972.
    16. António A. F. Santos, 2015. "On the Forecasting of Financial Volatility Using Ultra-High Frequency Data," GEMF Working Papers 2015-17, GEMF, Faculty of Economics, University of Coimbra.
    17. Wei, Yu & Wang, Peng, 2008. "Forecasting volatility of SSEC in Chinese stock market using multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1585-1592.
    18. Malay Bhattacharyya & Dileep Kumar M & Ramesh Kumar, 2009. "Optimal sampling frequency for volatility forecast models for the Indian stock markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 38-54.
    19. Elena Andreou & Constantinos Kourouyiannis & Andros Kourtellos, 2012. "Volatility Forecast Combinations using Asymmetric Loss Functions," University of Cyprus Working Papers in Economics 07-2012, University of Cyprus Department of Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1912.10343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.