IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1905.06037.html

Analyzing Subjective Well-Being Data with Misclassification

Author

Listed:
  • Ekaterina Oparina
  • Sorawoot Srisuma

Abstract

We use novel nonparametric techniques to test for the presence of non-classical measurement error in reported life satisfaction (LS) and study the potential effects from ignoring it. Our dataset comes from Wave 3 of the UK Understanding Society that is surveyed from 35,000 British households. Our test finds evidence of measurement error in reported LS for the entire dataset as well as for 26 out of 32 socioeconomic subgroups in the sample. We estimate the joint distribution of reported and latent LS nonparametrically in order to understand the mis-reporting behavior. We show this distribution can then be used to estimate parametric models of latent LS. We find measurement error bias is not severe enough to distort the main drivers of LS. But there is an important difference that is policy relevant. We find women tend to over-report their latent LS relative to men. This may help explain the gender puzzle that questions why women are reportedly happier than men despite being worse off on objective outcomes such as income and employment.

Suggested Citation

  • Ekaterina Oparina & Sorawoot Srisuma, 2019. "Analyzing Subjective Well-Being Data with Misclassification," Papers 1905.06037, arXiv.org.
  • Handle: RePEc:arx:papers:1905.06037
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1905.06037
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Goerke, Laszlo & Huang, Yue, 2022. "Job satisfaction and trade union membership in Germany," Labour Economics, Elsevier, vol. 78(C).
    3. Foliano, Francesca & Tonei, Valentina & Sevilla, Almudena, 2024. "Social restrictions, leisure and well-being," Labour Economics, Elsevier, vol. 87(C).
    4. Niccolò Gentile & Michela Bia & Andrew E. Clark & Conchita D'Ambrosio & Alexandre Tkatchenko, 2025. "What Makes a Satisfying Life? Prediction and Interpretation with Machine‐Learning Algorithms," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 71(2), May.
    5. Chen, Le-Yu & Oparina, Ekaterina & Powdthavee, Nattavudh & Srisuma, Sorawoot, 2022. "Robust Ranking of Happiness Outcomes: A Median Regression Perspective," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 672-686.
    6. Oparina, Ekaterina & Clark, Andrew E. & Layard, Richard, 2024. "The Easterlin paradox at 50," LSE Research Online Documents on Economics 126798, London School of Economics and Political Science, LSE Library.
    7. Christopher P Barrington-Leigh, 2025. "Are international happiness rankings reliable?," Papers 2509.06867, arXiv.org.
    8. Kaiser, Caspar, 2022. "Using memories to assess the intrapersonal comparability of wellbeing reports," Journal of Economic Behavior & Organization, Elsevier, vol. 193(C), pages 410-442.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • I31 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - General Welfare, Well-Being

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1905.06037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.