IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1901.03030.html
   My bibliography  Save this paper

Mean-variance portfolio selection under partial information with drift uncertainty

Author

Listed:
  • Jie Xiong
  • Zuo quan Xu
  • Jiayu Zheng

Abstract

In this paper, we study the mean-variance portfolio selection problem under partial information with drift uncertainty. First we show that the market model is complete even in this case while the information is not complete and the drift is uncertain. Then, the optimal strategy based on partial information is derived, which reduces to solving a related backward stochastic differential equation (BSDE). Finally, we propose an efficient numerical scheme to approximate the optimal portfolio that is the solution of the BSDE mentioned above. Malliavin calculus and the particle representation play important roles in this scheme.

Suggested Citation

  • Jie Xiong & Zuo quan Xu & Jiayu Zheng, 2019. "Mean-variance portfolio selection under partial information with drift uncertainty," Papers 1901.03030, arXiv.org, revised Oct 2020.
  • Handle: RePEc:arx:papers:1901.03030
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1901.03030
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    2. Chiu, Mei Choi & Li, Duan, 2006. "Asset and liability management under a continuous-time mean-variance optimization framework," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 330-355, December.
    3. Nualart,David & Nualart,Eulalia, 2018. "Introduction to Malliavin Calculus," Cambridge Books, Cambridge University Press, number 9781107039124.
    4. Nualart,David & Nualart,Eulalia, 2018. "Introduction to Malliavin Calculus," Cambridge Books, Cambridge University Press, number 9781107611986.
    5. Tomasz R. Bielecki & Hanqing Jin & Stanley R. Pliska & Xun Yu Zhou, 2005. "Continuous‐Time Mean‐Variance Portfolio Selection With Bankruptcy Prohibition," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 213-244, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Miao & Chen, Ping & Yao, Haixiang, 2017. "Mean-variance portfolio selection with only risky assets under regime switching," Economic Modelling, Elsevier, vol. 62(C), pages 35-42.
    2. Ying Hu & Xiaomin Shi & Zuo Quan Xu, 2022. "Non-homogeneous stochastic LQ control with regime switching and random coefficients," Papers 2201.01433, arXiv.org, revised Jul 2023.
    3. Yao, Haixiang & Zeng, Yan & Chen, Shumin, 2013. "Multi-period mean–variance asset–liability management with uncontrolled cash flow and uncertain time-horizon," Economic Modelling, Elsevier, vol. 30(C), pages 492-500.
    4. Wang, J. & Forsyth, P.A., 2011. "Continuous time mean variance asset allocation: A time-consistent strategy," European Journal of Operational Research, Elsevier, vol. 209(2), pages 184-201, March.
    5. Yao, Haixiang & Lai, Yongzeng & Li, Yong, 2013. "Continuous-time mean–variance asset–liability management with endogenous liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 6-17.
    6. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    7. Yao, Haixiang & Li, Zhongfei & Li, Duan, 2016. "Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability," European Journal of Operational Research, Elsevier, vol. 252(3), pages 837-851.
    8. Xin Huang & Duan Li & Daniel Zhuoyu Long, 2020. "Scenario-decomposition Solution Framework for Nonseparable Stochastic Control Problems," Papers 2010.08985, arXiv.org.
    9. Shihao Zhu & Jingtao Shi, 2019. "Optimal Reinsurance and Investment Strategies under Mean-Variance Criteria: Partial and Full Information," Papers 1906.08410, arXiv.org, revised Jun 2020.
    10. Zhang, Miao & Chen, Ping, 2016. "Mean–variance asset–liability management under constant elasticity of variance process," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 11-18.
    11. Hiroaki Hata & Nien-Lin Liu & Kazuhiro Yasuda, 2022. "Expressions of forward starting option price in Hull–White stochastic volatility model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 101-135, June.
    12. Jun Yu, 2014. "Optimal Asset-Liability Management for an Insurer Under Markov Regime Switching Jump-Diffusion Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(4), pages 317-330, November.
    13. Cvitanic, Jaksa & Lazrak, Ali & Wang, Tan, 2008. "Implications of the Sharpe ratio as a performance measure in multi-period settings," Journal of Economic Dynamics and Control, Elsevier, vol. 32(5), pages 1622-1649, May.
    14. Wan-Kai Pang & Yuan-Hua Ni & Xun Li & Ka-Fai Cedric Yiu, 2013. "Continuous-time Mean-Variance Portfolio Selection with Stochastic Parameters," Papers 1302.6669, arXiv.org.
    15. Xiangyu Cui & Duan Li & Xun Li, 2014. "Mean-Variance Policy for Discrete-time Cone Constrained Markets: The Consistency in Efficiency and Minimum-Variance Signed Supermartingale Measure," Papers 1403.0718, arXiv.org.
    16. Wang, J. & Forsyth, P.A., 2010. "Numerical solution of the Hamilton-Jacobi-Bellman formulation for continuous time mean variance asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 207-230, February.
    17. Xiangyu Cui & Jianjun Gao & Yun Shi, 2021. "Multi-period mean–variance portfolio optimization with management fees," Operational Research, Springer, vol. 21(2), pages 1333-1354, June.
    18. Xiangyu Cui & Xun Li & Duan Li, 2013. "Unified Framework of Mean-Field Formulations for Optimal Multi-period Mean-Variance Portfolio Selection," Papers 1303.1064, arXiv.org.
    19. Cong, F. & Oosterlee, C.W., 2016. "Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 23-38.
    20. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1901.03030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.