IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1810.08495.html
   My bibliography  Save this paper

Modelling information flows by Meyer-$\sigma$-fields in the singular stochastic control problem of irreversible investment

Author

Listed:
  • Peter Bank
  • David Besslich

Abstract

In stochastic control problems delicate issues arise when the controlled system can jump due to both exogenous shocks and endogenous controls. Here one has to specify what the controller knows when about the exogenous shocks and how and when she can act on this information. We propose to use Meyer-$\sigma$-fields as a flexible tool to model information flow in such situations. The possibilities of this approach are illustrated first in a very simple linear stochastic control problem and then in a fairly general formulation for the singular stochastic control problem of irreversible investment with inventory risk. For the latter, we illustrate in a first case study how different signals on exogenous jumps lead to different optimal controls, interpolating between the predictable and the optional case in a systematic manner.

Suggested Citation

  • Peter Bank & David Besslich, 2018. "Modelling information flows by Meyer-$\sigma$-fields in the singular stochastic control problem of irreversible investment," Papers 1810.08495, arXiv.org, revised Mar 2020.
  • Handle: RePEc:arx:papers:1810.08495
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1810.08495
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Czichowsky, Christoph & Schachermayer, Walter, 2016. "Duality theory for portfolio optimisation under transaction costs," LSE Research Online Documents on Economics 63362, London School of Economics and Political Science, LSE Library.
    2. Frank Riedel & Xia Su, 2011. "On irreversible investment," Finance and Stochastics, Springer, vol. 15(4), pages 607-633, December.
    3. repec:dau:papers:123456789/9300 is not listed on IDEAS
    4. Paolo Guasoni & Emmanuel Lépinette & Miklós Rásonyi, 2012. "The fundamental theorem of asset pricing under transaction costs," Finance and Stochastics, Springer, vol. 16(4), pages 741-777, October.
    5. Bertola, Giuseppe, 1998. "Irreversible investment," Research in Economics, Elsevier, vol. 52(1), pages 3-37, March.
    6. Giorgio Ferrari, 2012. "On an integral equation for the free-boundary of stochastic, irreversible investment problems," Papers 1211.0412, arXiv.org, revised Jan 2015.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giorgio Ferrari & Hanwu Li & Frank Riedel, 2020. "A Knightian Irreversible Investment Problem," Papers 2003.14359, arXiv.org, revised Apr 2020.
    2. Peter Bank & 'Alvaro Cartea & Laura Korber, 2023. "Optimal execution and speculation with trade signals," Papers 2306.00621, arXiv.org, revised Dec 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Angelis, Tiziano & Ferrari, Giorgio, 2014. "A stochastic partially reversible investment problem on a finite time-horizon: Free-boundary analysis," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4080-4119.
    2. Chiarolla, Maria B. & Ferrari, Giorgio & Stabile, Gabriele, 2015. "Optimal dynamic procurement policies for a storable commodity with Lévy prices and convex holding costs," European Journal of Operational Research, Elsevier, vol. 247(3), pages 847-858.
    3. de Angelis, Tiziano & Ferrari, Giorgio, 2014. "A Stochastic Reversible Investment Problem on a Finite-Time Horizon: Free Boundary Analysis," Center for Mathematical Economics Working Papers 477, Center for Mathematical Economics, Bielefeld University.
    4. Giorgio Ferrari & Hanwu Li & Frank Riedel, 2020. "A Knightian Irreversible Investment Problem," Papers 2003.14359, arXiv.org, revised Apr 2020.
    5. Alain Bensoussan & Benoît Chevalier-Roignant, 2019. "Sequential Capacity Expansion Options," Operations Research, INFORMS, vol. 67(1), pages 33-57, January.
    6. Ferrari, Giorgio & Riedel, Frank & Steg, Jan-Henrik, 2016. "Continuous-Time Public Good Contribution under Uncertainty," Center for Mathematical Economics Working Papers 485, Center for Mathematical Economics, Bielefeld University.
    7. Christoph Kuhn, 2023. "The fundamental theorem of asset pricing with and without transaction costs," Papers 2307.00571, arXiv.org, revised Aug 2024.
    8. Aïd, René & Basei, Matteo & Ferrari, Giorgio, 2023. "A Stationary Mean-Field Equilibrium Model of Irreversible Investment in a Two-Regime Economy," Center for Mathematical Economics Working Papers 679, Center for Mathematical Economics, Bielefeld University.
    9. Ferrari, Giorgio & Salminen, Paavo, 2016. "Irreversible Investment under Lévy Uncertainty: an Equation for the Optimal Boundary," Center for Mathematical Economics Working Papers 530, Center for Mathematical Economics, Bielefeld University.
    10. Ren'e Aid & Matteo Basei & Giorgio Ferrari, 2023. "A Stationary Mean-Field Equilibrium Model of Irreversible Investment in a Two-Regime Economy," Papers 2305.00541, arXiv.org.
    11. Koch, Torben & Vargiolu, Tiziano, 2019. "Optimal Installation of Solar Panels with Price Impact: a Solvable Singular Stochastic Control Problem," Center for Mathematical Economics Working Papers 627, Center for Mathematical Economics, Bielefeld University.
    12. Jan-Henrik Steg, 2012. "Irreversible investment in oligopoly," Finance and Stochastics, Springer, vol. 16(2), pages 207-224, April.
    13. Erhan Bayraktar & Leonid Dolinskyi & Yan Dolinsky, 2020. "Extended weak convergence and utility maximisation with proportional transaction costs," Finance and Stochastics, Springer, vol. 24(4), pages 1013-1034, October.
    14. Tiziano De Angelis & Salvatore Federico & Giorgio Ferrari, 2017. "Optimal Boundary Surface for Irreversible Investment with Stochastic Costs," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1135-1161, November.
    15. Ferrari, Giorgio, 2016. "Controlling public debt without forgetting Inflation," Center for Mathematical Economics Working Papers 564, Center for Mathematical Economics, Bielefeld University.
    16. Christoph Kühn & Alexander Molitor, 2022. "Semimartingale price systems in models with transaction costs beyond efficient friction," Finance and Stochastics, Springer, vol. 26(4), pages 927-982, October.
    17. Giorgio Ferrari & Paavo Salminen, 2014. "Irreversible Investment under L\'evy Uncertainty: an Equation for the Optimal Boundary," Papers 1411.2395, arXiv.org.
    18. Giorgio Ferrari & Frank Riedel & Jan-Henrik Steg, 2013. "Continuous-Time Public Good Contribution under Uncertainty: A Stochastic Control Approach," Papers 1307.2849, arXiv.org, revised Oct 2015.
    19. Junkee Jeon & Geonwoo Kim, 2020. "An Integral Equation Approach to the Irreversible Investment Problem with a Finite Horizon," Mathematics, MDPI, vol. 8(11), pages 1-10, November.
    20. Giorgio Ferrari, 2016. "On the Optimal Management of Public Debt: a Singular Stochastic Control Problem," Papers 1607.04153, arXiv.org, revised Dec 2017.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1810.08495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.