Change-Point Testing for Risk Measures in Time Series
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Moosup Kim & Sangyeol Lee, 2011. "Change point test for tail index for dependent data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(3), pages 297-311, November.
- Sen, Pranab Kumar, 1972. "On the Bahadur representation of sample quantiles for sequences of [phi]-mixing random variables," Journal of Multivariate Analysis, Elsevier, vol. 2(1), pages 77-95, March.
- Lobato I. N., 2001. "Testing That a Dependent Process Is Uncorrelated," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1066-1076, September.
- Hoga, Yannick, 2017. "Change Point Tests For The Tail Index Of Β-Mixing Random Variables," Econometric Theory, Cambridge University Press, vol. 33(4), pages 915-954, August.
- Deng, Ai & Perron, Pierre, 2008.
"A non-local perspective on the power properties of the CUSUM and CUSUM of squares tests for structural change,"
Journal of Econometrics, Elsevier, vol. 142(1), pages 212-240, January.
- Ai Deng & Pierre Perron, 2005. "A Non-local Perspective on the Power Properties of the CUSUM and CUSUM of Squares Tests for Structural Change," Boston University - Department of Economics - Working Papers Series WP2005-047, Boston University - Department of Economics.
- Ai Deng & Pierre Perron, 2007. "A Non-local Perspective on the Power Properties of the CUSUM and CUSUM of Squares Tests for Structural Change," Boston University - Department of Economics - Working Papers Series WP2007-019, Boston University - Department of Economics.
- Song Xi Chen, 2008. "Nonparametric Estimation of Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 6(1), pages 87-107, Winter.
- Bucher, Axel, 2015. "A Note on Weak Convergence of the Sequential Multivariate Empirical Process Under Strong Mixing," LIDAM Reprints ISBA 2015042, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Jonathan El Methni & Laurent Gardes & Stéphane Girard, 2014. "Non-parametric Estimation of Extreme Risk Measures from Conditional Heavy-tailed Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 988-1012, December.
- Xu, Ke-Li, 2016. "Model-Free Inference For Tail Risk Measures," Econometric Theory, Cambridge University Press, vol. 32(1), pages 122-153, February.
- Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
- Qu, Zhongjun, 2008. "Testing for structural change in regression quantiles," Journal of Econometrics, Elsevier, vol. 146(1), pages 170-184, September.
- Song Xi Chen, 2005. "Nonparametric Inference of Value-at-Risk for Dependent Financial Returns," Journal of Financial Econometrics, Oxford University Press, vol. 3(2), pages 227-255.
- Wendler, Martin, 2011. "Bahadur representation for U-quantiles of dependent data," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1064-1079, July.
- Shao, Xiaofeng & Zhang, Xianyang, 2010. "Testing for Change Points in Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1228-1240.
- Marco Rocco, 2014. "Extreme Value Theory In Finance: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 28(1), pages 82-108, February.
- Lee Schruben, 1983. "Confidence Interval Estimation Using Standardized Time Series," Operations Research, INFORMS, vol. 31(6), pages 1090-1108, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Christis Katsouris, 2023. "Quantile Time Series Regression Models Revisited," Papers 2308.06617, arXiv.org, revised Aug 2023.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hong, Yongmiao & Linton, Oliver & McCabe, Brendan & Sun, Jiajing & Wang, Shouyang, 2024.
"Kolmogorov–Smirnov type testing for structural breaks: A new adjusted-range based self-normalization approach,"
Journal of Econometrics, Elsevier, vol. 238(2).
- Hong, Y. & Linton, O. B. & McCabe, B. & Sun, J. & Wang, S., 2023. "Kolmogorov-Smirnov Type Testing for Structural Breaks: A New Adjusted-Range Based Self-Normalization Approach," Janeway Institute Working Papers 2316, Faculty of Economics, University of Cambridge.
- Hong, Y. & Linton, O. B. & McCabe, B. & Sun, J. & Wang, S., 2023. "Kolmogorov-Smirnov Type Testing for Structural Breaks: A New Adjusted-Range Based Self-Normalization Approach," Cambridge Working Papers in Economics 2367, Faculty of Economics, University of Cambridge.
- Kim, Seonjin & Zhao, Zhibiao & Shao, Xiaofeng, 2015. "Nonparametric functional central limit theorem for time series regression with application to self-normalized confidence interval," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 277-290.
- Aigner, Maximilian & Chavez-Demoulin, Valérie & Guillou, Armelle, 2022. "Measuring and comparing risks of different types," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 1-21.
- Yi-Ting Chen & Zhongjun Qu, 2015.
"M Tests with a New Normalization Matrix,"
Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 617-652, May.
- Zhongjun Qu & Yi-Ting Chen, 2010. "M Tests with a New Normalization Matrix," Boston University - Department of Economics - Working Papers Series WP2010-050, Boston University - Department of Economics.
- Christis Katsouris, 2023. "Structural Break Detection in Quantile Predictive Regression Models with Persistent Covariates," Papers 2302.05193, arXiv.org.
- Sun, Jiajing & Hong, Yongmiao & Linton, Oliver & Zhao, Xiaolu, 2022. "Adjusted-range self-normalized confidence interval construction for censored dependent data," Economics Letters, Elsevier, vol. 220(C).
- Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
- Guangwu Liu & Liu Jeff Hong, 2009. "Kernel estimation of quantile sensitivities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 511-525, September.
- Hoga, Yannick, 2017. "Monitoring multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 105-121.
- Oliver Linton & Dajing Shang & Yang Yan, 2012. "Efficient estimation of conditional risk measures in a semiparametric GARCH model," CeMMAP working papers 25/12, Institute for Fiscal Studies.
- Bai, Shuyang & Taqqu, Murad S. & Zhang, Ting, 2016. "A unified approach to self-normalized block sampling," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2465-2493.
- Qinchi Zhang & Wenzhi Yang & Shuhe Hu, 2014. "On Bahadur representation for sample quantiles under α-mixing sequence," Statistical Papers, Springer, vol. 55(2), pages 285-299, May.
- Kai Wenger & Christian Leschinski & Philipp Sibbertsen, 2019.
"Change-in-mean tests in long-memory time series: a review of recent developments,"
AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 237-256, June.
- Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2017. "Change-in-Mean Tests in Long-memory Time Series: A Review of Recent Developments," Hannover Economic Papers (HEP) dp-598, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Jiang, Feiyu & Zhao, Zifeng & Shao, Xiaofeng, 2023.
"Time series analysis of COVID-19 infection curve: A change-point perspective,"
Journal of Econometrics, Elsevier, vol. 232(1), pages 1-17.
- Feiyu Jiang & Zifeng Zhao & Xiaofeng Shao, 2020. "Time Series Analysis of COVID-19 Infection Curve: A Change-Point Perspective," Papers 2007.04553, arXiv.org.
- Oka, Tatsushi & Perron, Pierre, 2018.
"Testing for common breaks in a multiple equations system,"
Journal of Econometrics, Elsevier, vol. 204(1), pages 66-85.
- Pierre Perron & Tatsushi Oka, 2011. "Testing for Common Breaks in a Multiple Equations System," Boston University - Department of Economics - Working Papers Series WP2011-057, Boston University - Department of Economics.
- Tatsushi Oka & Pierre Perron, 2018. "Testing for common breaks in a multiple equations system," Monash Econometrics and Business Statistics Working Papers 3/18, Monash University, Department of Econometrics and Business Statistics.
- Tatsushi Oka & Pierre Perron, 2016. "Testing for Common Breaks in a Multiple Equations System," Papers 1606.00092, arXiv.org, revised Jan 2018.
- Alessandro Casini & Pierre Perron, 2018.
"Structural Breaks in Time Series,"
Boston University - Department of Economics - Working Papers Series
WP2019-02, Boston University - Department of Economics.
- Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Papers 1805.03807, arXiv.org.
- Holger Dette & Kevin Kokot & Stanislav Volgushev, 2020. "Testing relevant hypotheses in functional time series via self‐normalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 629-660, July.
- Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016.
"The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series,"
Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
- Heejoon Han & Oliver Linton & Tatsushi Oka & Yoon-Jae Whang, 2014. "The cross-quantilogram: measuring quantile dependence and testing directional predictability between time series," CeMMAP working papers 06/14, Institute for Fiscal Studies.
- Heejoon Han & Oliver Linton & Tatsushi Oka & Yoon-Jae Whang, 2014. "The Cross-Quantilogram: Measuring Quantile Dependence and Testing Directional Predictability between Time Series," Cambridge Working Papers in Economics 1452, Faculty of Economics, University of Cambridge.
- Heejoon Han & Oliver Linton & Tatsushi Oka & Yoon-Jae Whang, 2014. "The cross-quantilogram: measuring quantile dependence and testing directional predictability between time series," CeMMAP working papers CWP06/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Suparna Biswas & Santanu Dutta, 2015. "Assessing Market Risk of Indian Index Funds," Global Business Review, International Management Institute, vol. 16(3), pages 511-523, June.
- Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2018-10-01 (Econometrics)
- NEP-ETS-2018-10-01 (Econometric Time Series)
- NEP-RMG-2018-10-01 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1809.02303. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.