IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1803.08831.html
   My bibliography  Save this paper

A structural Heath-Jarrow-Morton framework for consistent intraday, spot, and futures electricity prices

Author

Listed:
  • Wieger Hinderks
  • Andreas Wagner
  • Ralf Korn

Abstract

In this paper we introduce a flexible HJM-type framework that allows for consistent modelling of intraday, spot, futures, and option prices. This framework is based on stochastic processes with economic interpretations and consistent with the initial term structure given in the form of a price forward curve. Furthermore, the framework allows for existing day-ahead spot price models to be used in an HJM setting. We include several explicit examples of classical spot price models but also show how structural models and factor models can be formulated within the framework.

Suggested Citation

  • Wieger Hinderks & Andreas Wagner & Ralf Korn, 2018. "A structural Heath-Jarrow-Morton framework for consistent intraday, spot, and futures electricity prices," Papers 1803.08831, arXiv.org, revised Jan 2019.
  • Handle: RePEc:arx:papers:1803.08831
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1803.08831
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    2. René Aïd & Luciano Campi & Adrien Nguyen Huu & Nizar Touzi, 2009. "A Structural Risk-Neutral Model Of Electricity Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(07), pages 925-947.
    3. Rudiger Kiesel & Gero Schindlmayr & Reik Borger, 2009. "A two-factor model for the electricity forward market," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 279-287.
    4. Andreas Wagner, 2014. "Residual Demand Modeling and Application to Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    5. Juri Hinz & Lutz Von Grafenstein & Michel Verschuere & Martina Wilhelm, 2005. "Pricing electricity risk by interest rate methods," Quantitative Finance, Taylor & Francis Journals, vol. 5(1), pages 49-60.
    6. Les Clewlow & Chris Strickland, 1999. "Valuing Energy Options in a One Factor Model Fitted to Forward Prices," Research Paper Series 10, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. repec:bla:jfinan:v:59:y:2004:i:4:p:1877-1900 is not listed on IDEAS
    8. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    9. Latini, Luca & Piccirilli, Marco & Vargiolu, Tiziano, 2019. "Mean-reverting no-arbitrage additive models for forward curves in energy markets," Energy Economics, Elsevier, vol. 79(C), pages 157-170.
    10. Hendrik Bessembinder & Michael L. Lemmon, 2002. "Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets," Journal of Finance, American Finance Association, vol. 57(3), pages 1347-1382, June.
    11. Lyle, Matthew R. & Elliott, Robert J., 2009. "A 'simple' hybrid model for power derivatives," Energy Economics, Elsevier, vol. 31(5), pages 757-767, September.
    12. M. T. Barlow, 2002. "A Diffusion Model For Electricity Prices," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 287-298, October.
    13. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    14. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    15. Fred Espen Benth & Marco Piccirilli & Tiziano Vargiolu, 2017. "Additive energy forward curves in a Heath-Jarrow-Morton framework," Papers 1709.03310, arXiv.org, revised Jun 2018.
    16. Caldana, Ruggero & Fusai, Gianluca & Roncoroni, Andrea, 2017. "Electricity forward curves with thin granularity: Theory and empirical evidence in the hourly EPEXspot market," European Journal of Operational Research, Elsevier, vol. 261(2), pages 715-734.
    17. Benth, Fred Espen & Koekebakker, Steen, 2008. "Stochastic modeling of financial electricity contracts," Energy Economics, Elsevier, vol. 30(3), pages 1116-1157, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wieger Hinderks & Ralf Korn & Andreas Wagner, 2020. "Unifying the theory of storage and the risk premium by an unobservable intrinsic electricity price," Papers 2011.03987, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    2. Fred Espen Benth & Marco Piccirilli & Tiziano Vargiolu, 2017. "Additive energy forward curves in a Heath-Jarrow-Morton framework," Papers 1709.03310, arXiv.org, revised Jun 2018.
    3. Thomas Deschatre & Olivier F'eron & Pierre Gruet, 2021. "A survey of electricity spot and futures price models for risk management applications," Papers 2103.16918, arXiv.org, revised Jul 2021.
    4. Hinderks, W.J. & Wagner, A., 2020. "Factor models in the German electricity market: Stylized facts, seasonality, and calibration," Energy Economics, Elsevier, vol. 85(C).
    5. Rene Carmona & Michael Coulon & Daniel Schwarz, 2012. "Electricity price modeling and asset valuation: a multi-fuel structural approach," Papers 1205.2299, arXiv.org.
    6. Olivier Feron & Pierre Gruet, 2020. "Estimation of the number of factors in a multi-factorial Heath-Jarrow-Morton model in electricity markets," Working Papers hal-02880824, HAL.
    7. Wieger Hinderks & Ralf Korn & Andreas Wagner, 2020. "Unifying the theory of storage and the risk premium by an unobservable intrinsic electricity price," Papers 2011.03987, arXiv.org.
    8. Iván Blanco, Juan Ignacio Peña, and Rosa Rodriguez, 2018. "Modelling Electricity Swaps with Stochastic Forward Premium Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    9. Cartea, Álvaro & González-Pedraz, Carlos, 2012. "How much should we pay for interconnecting electricity markets? A real options approach," Energy Economics, Elsevier, vol. 34(1), pages 14-30.
    10. Latini, Luca & Piccirilli, Marco & Vargiolu, Tiziano, 2019. "Mean-reverting no-arbitrage additive models for forward curves in energy markets," Energy Economics, Elsevier, vol. 79(C), pages 157-170.
    11. Markus Burger & Bernhard Klar & Alfred Muller & Gero Schindlmayr, 2004. "A spot market model for pricing derivatives in electricity markets," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 109-122.
    12. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, November.
    13. repec:dui:wpaper:1504 is not listed on IDEAS
    14. Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Menten and Yves Smeers, . "Practical stochastic modeling of electricity prices," Journal of Energy Markets, Journal of Energy Markets.
    15. Andreas Wagner, 2014. "Residual Demand Modeling and Application to Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    16. Piccirilli, Marco & Schmeck, Maren Diane & Vargiolu, Tiziano, 2021. "Capturing the power options smile by an additive two-factor model for overlapping futures prices," Energy Economics, Elsevier, vol. 95(C).
    17. Andreis, Luisa & Flora, Maria & Fontini, Fulvio & Vargiolu, Tiziano, 2020. "Pricing reliability options under different electricity price regimes," Energy Economics, Elsevier, vol. 87(C).
    18. Kallabis, Thomas & Pape, Christian & Weber, Christoph, 2016. "The plunge in German electricity futures prices – Analysis using a parsimonious fundamental model," Energy Policy, Elsevier, vol. 95(C), pages 280-290.
    19. Farshid Mehrdoust & Idin Noorani, 2023. "Valuation of Spark-Spread Option Written on Electricity and Gas Forward Contracts Under Two-Factor Models with Non-Gaussian Lévy Processes," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 807-853, February.
    20. Piergiacomo Sabino, 2021. "Pricing Energy Derivatives in Markets Driven by Tempered Stable and CGMY Processes of Ornstein-Uhlenbeck Type," Papers 2103.13252, arXiv.org.
    21. Füss, Roland & Mahringer, Steffen & Prokopczuk, Marcel, 2015. "Electricity derivatives pricing with forward-looking information," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 34-57.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1803.08831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.