IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1708.05957.html
   My bibliography  Save this paper

A new Mertens decomposition of $\mathscr{Y}^{g,\xi}$-submartingale systems. Application to BSDEs with weak constraints at stopping times

Author

Listed:
  • Roxana Dumitrescu
  • Romuald Elie
  • Wissal Sabbagh
  • Chao Zhou

Abstract

We first introduce the concept of $\mathscr{Y}^{g,\xi}$-submartingale systems, where the nonlinear operator $\mathscr{Y}^{g,\xi}$ corresponds to the first component of the solution of a reflected BSDE with generator $g$ and lower obstacle $\xi$. We first show that, in the case of a left-limited right-continuous obstacle, any $\mathscr{Y}^{g,\xi}$-submartingale system can be aggregated by a process which is right-lower semicontinuous. We then prove a \textit{Mertens decomposition}, by using an original approach which does not make use of the standard penalization technique. These results are in particular useful for the treatment of control/stopping game problems and, to the best of our knowledge, they are completely new in the literature. As an application, we introduce a new class of \textit{Backward Stochastic Differential Equations (in short BSDEs) with weak constraints at stopping times}, which are related to the partial hedging of American options. We study the wellposedness of such equations and, using the $\mathscr{Y}^{g,\xi}$-Mertens decomposition, we show that the family of minimal time-$t$-values $Y_t$, with $(Y,Z)$ a supersolution of the BSDE with weak constraints, admits a representation in terms of a reflected backward stochastic differential equation.

Suggested Citation

  • Roxana Dumitrescu & Romuald Elie & Wissal Sabbagh & Chao Zhou, 2017. "A new Mertens decomposition of $\mathscr{Y}^{g,\xi}$-submartingale systems. Application to BSDEs with weak constraints at stopping times," Papers 1708.05957, arXiv.org, revised May 2023.
  • Handle: RePEc:arx:papers:1708.05957
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1708.05957
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philippe Briand & Romuald Elie & Ying Hu, 2016. "BSDEs with mean reflection," Working Papers hal-01318649, HAL.
    2. Sabrina Mulinacci, 2011. "The efficient hedging problem for American options," Finance and Stochastics, Springer, vol. 15(2), pages 365-397, June.
    3. Hans FÃllmer & Peter Leukert, 2000. "Efficient hedging: Cost versus shortfall risk," Finance and Stochastics, Springer, vol. 4(2), pages 117-146.
    4. Philippe Briand & Romuald Elie & Ying Hu, 2016. "BSDEs with mean reflection," Papers 1605.06301, arXiv.org.
    5. Bruno Bouchard & Jean-François Chassagneux & Géraldine Bouveret, 2016. "A backward dual representation for the quantile hedging of Bermudan options," Post-Print hal-01069270, HAL.
    6. Hans FÃllmer & Peter Leukert, 1999. "Quantile hedging," Finance and Stochastics, Springer, vol. 3(3), pages 251-273.
    7. Lepeltier, J.-P. & Xu, M., 2005. "Penalization method for reflected backward stochastic differential equations with one r.c.l.l. barrier," Statistics & Probability Letters, Elsevier, vol. 75(1), pages 58-66, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cyril B'en'ezet & Jean-Franc{c}ois Chassagneux & Christoph Reisinger, 2019. "A numerical scheme for the quantile hedging problem," Papers 1902.11228, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Lindberg, 2012. "Optimal partial hedging of an American option: shifting the focus to the expiration date," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 75(3), pages 221-243, June.
    2. Leitner Johannes, 2005. "Optimal portfolios with expected loss constraints and shortfall risk optimal martingale measures," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 49-66, January.
    3. Leitner Johannes, 2007. "Pricing and hedging with globally and instantaneously vanishing risk," Statistics & Risk Modeling, De Gruyter, vol. 25(4), pages 311-332, October.
    4. Alexander Melnikov & Shuo Tong, 2014. "Valuation of finance/insurance contracts: Efficient hedging and stochastic interest rates modeling," Risk and Decision Analysis, IOS Press, issue 5, pages 23-41.
    5. Cyril B'en'ezet & Jean-Franc{c}ois Chassagneux & Mohan Yang, 2023. "An optimal transport approach for the multiple quantile hedging problem," Papers 2308.01121, arXiv.org.
    6. Adrien Nguyen Huu & Nadia Oudjane, 2014. "Hedging Expected Losses on Derivatives in Electricity Futures Markets," Papers 1401.8271, arXiv.org.
    7. Wang, Yumin, 2009. "Quantile hedging for guaranteed minimum death benefits," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 449-458, December.
    8. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 21, July-Dece.
    9. Coleman, Thomas F. & Levchenkov, Dmitriy & Li, Yuying, 2007. "Discrete hedging of American-type options using local risk minimization," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3398-3419, November.
    10. Bruno Bouchard & Ngoc-Minh Dang, 2013. "Generalized stochastic target problems for pricing and partial hedging under loss constraints—application in optimal book liquidation," Finance and Stochastics, Springer, vol. 17(1), pages 31-72, January.
    11. Peter Lindberg, 2010. "Optimal partial hedging in a discrete-time market as a knapsack problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(3), pages 433-451, December.
    12. Bruno Bouchard & Jean-François Chassagneux & Géraldine Bouveret, 2016. "A backward dual representation for the quantile hedging of Bermudan options," Post-Print hal-01069270, HAL.
    13. Tomasz Tkalinski, 2014. "Convex hedging of non-superreplicable claims in discrete-time market models," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(2), pages 239-252, April.
    14. Melnikov, Alexander & Smirnov, Ivan, 2012. "Dynamic hedging of conditional value-at-risk," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 182-190.
    15. Minina, Vera & Vellekoop, Michel, 2010. "A risk reserve model for hedging in incomplete markets," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1233-1247, July.
    16. Balder, Sven & Brandl, Michael & Mahayni, Antje, 2009. "Effectiveness of CPPI strategies under discrete-time trading," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 204-220, January.
    17. Ying Jiao & Olivier Klopfenstein & Peter Tankov, 2017. "Hedging under multiple risk constraints," Finance and Stochastics, Springer, vol. 21(2), pages 361-396, April.
    18. Zhou, Qing & Wu, Weixing & Wang, Zengwu, 2008. "Cooperative hedging with a higher interest rate for borrowing," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 609-616, April.
    19. Pellizzari, P., 2005. "Static hedging of multivariate derivatives by simulation," European Journal of Operational Research, Elsevier, vol. 166(2), pages 507-519, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1708.05957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.