IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v17y2013i1p31-72.html
   My bibliography  Save this article

Generalized stochastic target problems for pricing and partial hedging under loss constraints—application in optimal book liquidation

Author

Listed:
  • Bruno Bouchard
  • Ngoc-Minh Dang

Abstract

We consider a singular version with state constraints of the stochastic target problems studied in Soner and Touzi (SIAM J. Control Optim. 41:404–424, 2002 ; J. Eur. Math. Soc. 4:201–236, 2002 ) and more recently Bouchard et al. (SIAM J. Control Optim. 48:3123–3150, 2009 ), among others. This provides a general framework for the pricing of contingent claims under risk constraints. Our extended version perfectly fits the market models with proportional transaction costs and the order book liquidation issues. Our main result is a direct PDE characterization of the associated pricing function. As an example application, we discuss the valuation of VWAP-guaranteed-type book liquidation contracts, for a general class of risk functions. Copyright Springer-Verlag 2013

Suggested Citation

  • Bruno Bouchard & Ngoc-Minh Dang, 2013. "Generalized stochastic target problems for pricing and partial hedging under loss constraints—application in optimal book liquidation," Finance and Stochastics, Springer, vol. 17(1), pages 31-72, January.
  • Handle: RePEc:spr:finsto:v:17:y:2013:i:1:p:31-72
    DOI: 10.1007/s00780-012-0198-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00780-012-0198-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00780-012-0198-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. repec:hal:wpaper:hal-00422427 is not listed on IDEAS
    2. Y.M. Kabanov, 1999. "Hedging and liquidation under transaction costs in currency markets," Finance and Stochastics, Springer, vol. 3(2), pages 237-248.
    3. Hans FÃllmer & Peter Leukert, 2000. "Efficient hedging: Cost versus shortfall risk," Finance and Stochastics, Springer, vol. 4(2), pages 117-146.
    4. Hans FÃllmer & Peter Leukert, 1999. "Quantile hedging," Finance and Stochastics, Springer, vol. 3(3), pages 251-273.
    5. repec:dau:papers:123456789/1533 is not listed on IDEAS
    6. Touzi, Nizar, 2000. "Direct characterization of the value of super-replication under stochastic volatility and portfolio constraints," Stochastic Processes and their Applications, Elsevier, vol. 88(2), pages 305-328, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cyril B'en'ezet & Jean-Franc{c}ois Chassagneux & Mohan Yang, 2023. "An optimal transport approach for the multiple quantile hedging problem," Papers 2308.01121, arXiv.org.
    2. Olivier Gu'eant & Guillaume Royer, 2013. "VWAP execution and guaranteed VWAP," Papers 1306.2832, arXiv.org, revised May 2014.
    3. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    4. Remi Genet, 2025. "Deep Learning for VWAP Execution in Crypto Markets: Beyond the Volume Curve," Papers 2502.13722, arXiv.org, revised Apr 2025.
    5. Olivier Guéant & Royer Guillaume, 2014. "VWAP execution and guaranteed VWAP," Post-Print hal-01393121, HAL.
    6. Francesco Cordoni & Luca Di Persio & Luca Prezioso, 2019. "A lending scheme for a system of interconnected banks with probabilistic constraints of failure," Papers 1903.06042, arXiv.org, revised Oct 2019.
    7. Bayraktar, Erhan & Yao, Song, 2024. "Stochastic control/stopping problem with expectation constraints," Stochastic Processes and their Applications, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leitner Johannes, 2005. "Optimal portfolios with expected loss constraints and shortfall risk optimal martingale measures," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 49-66, January.
    2. Leitner Johannes, 2007. "Pricing and hedging with globally and instantaneously vanishing risk," Statistics & Risk Modeling, De Gruyter, vol. 25(4), pages 311-332, October.
    3. Bruno Bouchard & Ludovic Moreau & Mete H. Soner, 2016. "Hedging under an expected loss constraint with small transaction costs," Post-Print hal-00863562, HAL.
    4. Alexander Melnikov & Shuo Tong, 2014. "Valuation of finance/insurance contracts: Efficient hedging and stochastic interest rates modeling," Risk and Decision Analysis, IOS Press, issue 5, pages 23-41.
    5. Roxana Dumitrescu & Romuald Elie & Wissal Sabbagh & Chao Zhou, 2017. "A new Mertens decomposition of $\mathscr{Y}^{g,\xi}$-submartingale systems. Application to BSDEs with weak constraints at stopping times," Papers 1708.05957, arXiv.org, revised May 2023.
    6. Adrien Nguyen Huu & Nadia Oudjane, 2014. "Hedging Expected Losses on Derivatives in Electricity Futures Markets," Papers 1401.8271, arXiv.org.
    7. Wang, Yumin, 2009. "Quantile hedging for guaranteed minimum death benefits," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 449-458, December.
    8. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 21, July-Dece.
    9. Coleman, Thomas F. & Levchenkov, Dmitriy & Li, Yuying, 2007. "Discrete hedging of American-type options using local risk minimization," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3398-3419, November.
    10. Peter Lindberg, 2010. "Optimal partial hedging in a discrete-time market as a knapsack problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(3), pages 433-451, December.
    11. Bruno Bouchard & Ludovic Moreau & Mete H. Soner, 2013. "Hedging under an expected loss constraint with small transaction costs," Papers 1309.4916, arXiv.org, revised Sep 2014.
    12. Bruno Bouchard & Jean-François Chassagneux & Géraldine Bouveret, 2016. "A backward dual representation for the quantile hedging of Bermudan options," Post-Print hal-01069270, HAL.
    13. Tomasz Tkalinski, 2014. "Convex hedging of non-superreplicable claims in discrete-time market models," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(2), pages 239-252, April.
    14. Melnikov, Alexander & Smirnov, Ivan, 2012. "Dynamic hedging of conditional value-at-risk," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 182-190.
    15. Minina, Vera & Vellekoop, Michel, 2010. "A risk reserve model for hedging in incomplete markets," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1233-1247, July.
    16. Balder, Sven & Brandl, Michael & Mahayni, Antje, 2009. "Effectiveness of CPPI strategies under discrete-time trading," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 204-220, January.
    17. Ying Jiao & Olivier Klopfenstein & Peter Tankov, 2017. "Hedging under multiple risk constraints," Finance and Stochastics, Springer, vol. 21(2), pages 361-396, April.
    18. Teemu Pennanen & Ari-Pekka Perkkiö, 2018. "Convex duality in optimal investment and contingent claim valuation in illiquid markets," Finance and Stochastics, Springer, vol. 22(4), pages 733-771, October.
    19. Zhou, Qing & Wu, Weixing & Wang, Zengwu, 2008. "Cooperative hedging with a higher interest rate for borrowing," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 609-616, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:17:y:2013:i:1:p:31-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.