IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Hedging under an expected loss constraint with small transaction costs

  • Bruno Bouchard

    (CEREMADE, CREST)

  • Ludovic Moreau
  • Mete H. Soner
Registered author(s):

    We consider the problem of option hedging in a market with proportional transaction costs. Since super-replication is very costly in such markets, we replace perfect hedging with an expected loss constraint. Asymptotic analysis for small transactions is used to obtain a tractable model. A general expansion theory is developed using the dynamic programming approach. Explicit formulae are also obtained in the special cases of an exponential or power loss function. As a corollary, we retrieve the asymptotics for the exponential utility indifference price.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/1309.4916
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number 1309.4916.

    as
    in new window

    Length:
    Date of creation: Sep 2013
    Date of revision: Sep 2014
    Handle: RePEc:arx:papers:1309.4916
    Contact details of provider: Web page: http://arxiv.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Bouchard, Bruno & Touzi, Nizar, 2000. "Explicit Solution of the Multivariate Super-Replication Problem under Transaction Costs," Economics Papers from University Paris Dauphine 123456789/1533, Paris Dauphine University.
    2. Constantinides, George M, 1986. "Capital Market Equilibrium with Transaction Costs," Journal of Political Economy, University of Chicago Press, vol. 94(4), pages 842-62, August.
    3. Halil Mete Soner & Guy Barles, 1998. "Option pricing with transaction costs and a nonlinear Black-Scholes equation," Finance and Stochastics, Springer, vol. 2(4), pages 369-397.
    4. Dylan Possama\"i & Nizar Touzi & H. Mete Soner, 2012. "Large liquidity expansion of super-hedging costs," Papers 1208.3785, arXiv.org, revised Apr 2015.
    5. Possamaï, Dylan & Soner, H. Mete & Touzi, Nizar, 2012. "Large liquidity expansion of super-hedging costs," Economics Papers from University Paris Dauphine 123456789/5526, Paris Dauphine University.
    6. Y.M. Kabanov, 1999. "Hedging and liquidation under transaction costs in currency markets," Finance and Stochastics, Springer, vol. 3(2), pages 237-248.
    7. Karel Janeček & Steven Shreve, 2004. "Asymptotic analysis for optimal investment and consumption with transaction costs," Finance and Stochastics, Springer, vol. 8(2), pages 181-206, 05.
    8. H. Mete Soner & Nizar Touzi, 2012. "Homogenization and asymptotics for small transaction costs," Papers 1202.6131, arXiv.org, revised Jun 2013.
    9. Bruno Bouchard & Marcel Nutz, 2011. "Weak Dynamic Programming for Generalized State Constraints," Papers 1105.0745, arXiv.org, revised Oct 2012.
    10. Magill, Michael J. P. & Constantinides, George M., 1976. "Portfolio selection with transactions costs," Journal of Economic Theory, Elsevier, vol. 13(2), pages 245-263, October.
    11. Bruno Bouchard, 2002. "Utility maximization on the real line under proportional transaction costs," Finance and Stochastics, Springer, vol. 6(4), pages 495-516.
    12. Bouchard, Bruno, 2002. "Utility Maximization on the Real Line under Proportional Transaction Costs," Economics Papers from University Paris Dauphine 123456789/1532, Paris Dauphine University.
    13. A. E. Whalley & P. Wilmott, 1997. "An Asymptotic Analysis of an Optimal Hedging Model for Option Pricing with Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 7(3), pages 307-324.
    14. Dumas, Bernard & Luciano, Elisa, 1991. " An Exact Solution to a Dynamic Portfolio Choice Problem under Transactions Costs," Journal of Finance, American Finance Association, vol. 46(2), pages 577-95, June.
    15. C. Atkinson & S. Mokkhavesa, 2004. "Multi-asset portfolio optimization with transaction cost," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(2), pages 95-123.
    16. Hans FÃllmer & Peter Leukert, 1999. "Quantile hedging," Finance and Stochastics, Springer, vol. 3(3), pages 251-273.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1309.4916. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.