IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1702.03244.html
   My bibliography  Save this paper

$L_2$Boosting for Economic Applications

Author

Listed:
  • Ye Luo
  • Martin Spindler

Abstract

In the recent years more and more high-dimensional data sets, where the number of parameters $p$ is high compared to the number of observations $n$ or even larger, are available for applied researchers. Boosting algorithms represent one of the major advances in machine learning and statistics in recent years and are suitable for the analysis of such data sets. While Lasso has been applied very successfully for high-dimensional data sets in Economics, boosting has been underutilized in this field, although it has been proven very powerful in fields like Biostatistics and Pattern Recognition. We attribute this to missing theoretical results for boosting. The goal of this paper is to fill this gap and show that boosting is a competitive method for inference of a treatment effect or instrumental variable (IV) estimation in a high-dimensional setting. First, we present the $L_2$Boosting with componentwise least squares algorithm and variants which are tailored for regression problems which are the workhorse for most Econometric problems. Then we show how $L_2$Boosting can be used for estimation of treatment effects and IV estimation. We highlight the methods and illustrate them with simulations and empirical examples. For further results and technical details we refer to Luo and Spindler (2016, 2017) and to the online supplement of the paper.

Suggested Citation

  • Ye Luo & Martin Spindler, 2017. "$L_2$Boosting for Economic Applications," Papers 1702.03244, arXiv.org.
  • Handle: RePEc:arx:papers:1702.03244
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1702.03244
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1702.03244. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.