IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1509.01217.html
   My bibliography  Save this paper

Wealth distribution across communities of adaptive financial agents

Author

Listed:
  • Pietro DeLellis
  • Franco Garofalo
  • Francesco Lo Iudice
  • Elena Napoletano

Abstract

This paper studies the trading volumes and wealth distribution of a novel agent-based model of an artificial financial market. In this model, heterogeneous agents, behaving according to the Von Neumann and Morgenstern utility theory, may mutually interact. A Tobin-like tax (TT) on successful investments and a flat tax are compared to assess the effects on the agents' wealth distribution. We carry out extensive numerical simulations in two alternative scenarios: i) a reference scenario, where the agents keep their utility function fixed, and ii) a focal scenario, where the agents are adaptive and self-organize in communities, emulating their neighbours by updating their own utility function. Specifically, the interactions among the agents are modelled through a directed scale-free network to account for the presence of community leaders, and the herding-like effect is tested against the reference scenario. We observe that our model is capable of replicating the benefits and drawbacks of the two taxation systems and that the interactions among the agents strongly affect the wealth distribution across the communities. Remarkably, the communities benefit from the presence of leaders with successful trading strategies, and are more likely to increase their average wealth. Moreover, this emulation mechanism mitigates the decrease in trading volumes, which is a typical drawback of TTs.

Suggested Citation

  • Pietro DeLellis & Franco Garofalo & Francesco Lo Iudice & Elena Napoletano, 2015. "Wealth distribution across communities of adaptive financial agents," Papers 1509.01217, arXiv.org, revised Sep 2015.
  • Handle: RePEc:arx:papers:1509.01217
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1509.01217
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. N/A, 1999. "Index to International Regional Science Review," International Regional Science Review, , vol. 22(3), pages 354-355, December.
    2. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    3. Chakrabarti,Bikas K. & Chakraborti,Anirban & Chakravarty,Satya R. & Chatterjee,Arnab, 2013. "Econophysics of Income and Wealth Distributions," Cambridge Books, Cambridge University Press, number 9781107013445, June.
    4. M. Cristelli & L. Pietronero & A. Zaccaria, 2011. "Critical Overview of Agent-Based Models for Economics," Papers 1101.1847, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pietro DeLellis & Anna DiMeglio & Franco Garofalo & Francesco Lo Iudice, 2017. "The evolving cobweb of relations among partially rational investors," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.
    2. Khaldoun Khashanah & Talal Alsulaiman, 2017. "Connectivity, Information Jumps, and Market Stability: An Agent-Based Approach," Complexity, Hindawi, vol. 2017, pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiran Sharma & Subhradeep Das & Anirban Chakraborti, 2017. "Global Income Inequality and Savings: A Data Science Perspective," Papers 1801.00253, arXiv.org, revised Aug 2018.
    2. Hutzler, S. & Sommer, C. & Richmond, P., 2016. "On the relationship between income, fertility rates and the state of democracy in society," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 9-18.
    3. Venkatasubramanian, Venkat & Luo, Yu & Sethuraman, Jay, 2015. "How much inequality in income is fair? A microeconomic game theoretic perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 435(C), pages 120-138.
    4. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    5. Maia, Adriano & Matsushita, Raul & Demarcus, Antonio & Da Silva, Sergio, 2023. "Scalability in a two-class interoccupational earnings distribution model," SocArXiv 23brg, Center for Open Science.
    6. Tiziana Assenza & William A. Brock & Cars H. Hommes, 2013. "Animal Spirits, Heterogeneous Expectations and the Emergence of Booms and Busts," Tinbergen Institute Discussion Papers 13-205/II, Tinbergen Institute.
    7. Ion Santra, 2022. "Effect of tax dynamics on linearly growing processes under stochastic resetting: a possible economic model," Papers 2202.13713, arXiv.org.
    8. Smerlak, Matteo, 2016. "Thermodynamics of inequalities: From precariousness to economic stratification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 40-50.
    9. Lux, Thomas, 2012. "Estimation of an agent-based model of investor sentiment formation in financial markets," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1284-1302.
    10. Franke, Reiner, 2008. "Artificial Long Memory Effects in Two Agend-Based Asset Pricing Models," Economics Working Papers 2008-15, Christian-Albrechts-University of Kiel, Department of Economics.
    11. Philip A. Stork & Milan Vidojevic & Remco C. J. Zwinkels, 2021. "Behavioral heterogeneity in return expectations across equity style portfolios," International Review of Finance, International Review of Finance Ltd., vol. 21(4), pages 1225-1250, December.
    12. Weihong Huang & Huanhuan Zheng & Wai-Mun Chia, 2013. "Asymmetric returns, gradual bubbles and sudden crashes," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 420-437, May.
    13. Zheng, Min & Wang, Hefei & Wang, Chengzhang & Wang, Shouyang, 2017. "Speculative behavior in a housing market: Boom and bust," Economic Modelling, Elsevier, vol. 61(C), pages 50-64.
    14. Eliazar, Iddo, 2017. "Inequality spectra," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 824-847.
    15. Guillaume Coqueret, 2016. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02088097, HAL.
    16. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    17. Hommes, Cars, 2011. "The heterogeneous expectations hypothesis: Some evidence from the lab," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 1-24, January.
    18. Pataracchia, B., 2013. "Ambiguity aversion and heterogeneity in financial markets : An empirical and theoretical perspective," Other publications TiSEM bc849a3c-87a4-4718-b049-f, Tilburg University, School of Economics and Management.
    19. Franke, Reiner, 2010. "On the specification of noise in two agent-based asset pricing models," Journal of Economic Dynamics and Control, Elsevier, vol. 34(6), pages 1140-1152, June.
    20. ter Ellen, Saskia & Hommes, Cars H. & Zwinkels, Remco C.J., 2021. "Comparing behavioural heterogeneity across asset classes," Journal of Economic Behavior & Organization, Elsevier, vol. 185(C), pages 747-769.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1509.01217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.