IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1504.04296.html
   My bibliography  Save this paper

Estimating the Algorithmic Complexity of Stock Markets

Author

Listed:
  • Olivier Brandouy
  • Jean-Paul Delahaye
  • Lin Ma

Abstract

Randomness and regularities in Finance are usually treated in probabilistic terms. In this paper, we develop a completely different approach in using a non-probabilistic framework based on the algorithmic information theory initially developed by Kolmogorov (1965). We present some elements of this theory and show why it is particularly relevant to Finance, and potentially to other sub-fields of Economics as well. We develop a generic method to estimate the Kolmogorov complexity of numeric series. This approach is based on an iterative "regularity erasing procedure" implemented to use lossless compression algorithms on financial data. Examples are provided with both simulated and real-world financial time series. The contributions of this article are twofold. The first one is methodological : we show that some structural regularities, invisible with classical statistical tests, can be detected by this algorithmic method. The second one consists in illustrations on the daily Dow-Jones Index suggesting that beyond several well-known regularities, hidden structure may in this index remain to be identified.

Suggested Citation

  • Olivier Brandouy & Jean-Paul Delahaye & Lin Ma, 2015. "Estimating the Algorithmic Complexity of Stock Markets," Papers 1504.04296, arXiv.org.
  • Handle: RePEc:arx:papers:1504.04296
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1504.04296
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Andreia Dionisio & Rui Menezes & Diana A. Mendes, 2007. "Entropy and Uncertainty Analysis in Financial Markets," Papers 0709.0668, arXiv.org.
    2. Armin Shmilovici & Yael Alon-Brimer & Shmuel Hauser, 2003. "Using a Stochastic Complexity Measure to Check the Efficient Market Hypothesis," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 273-284, October.
    3. Giglio, Ricardo & Matsushita, Raul & Figueiredo, Annibal & Gleria, Iram & Da Silva, Sergio, 2008. "Algorithmic complexity theory and the relative efficiency of financial markets," MPRA Paper 8704, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krongthong Khairiree & Chonnart Meenanun, 2015. "Students? Project-Based Learning: Local Commercial Products and Marketing Mix," Proceedings of International Academic Conferences 2604495, International Institute of Social and Economic Sciences.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1504.04296. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.