IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1503.08123.html
   My bibliography  Save this paper

Higher order elicitability and Osband's principle

Author

Listed:
  • Tobias Fissler
  • Johanna F. Ziegel

Abstract

A statistical functional, such as the mean or the median, is called elicitable if there is a scoring function or loss function such that the correct forecast of the functional is the unique minimizer of the expected score. Such scoring functions are called strictly consistent for the functional. The elicitability of a functional opens the possibility to compare competing forecasts and to rank them in terms of their realized scores. In this paper, we explore the notion of elicitability for multi-dimensional functionals and give both necessary and sufficient conditions for strictly consistent scoring functions. We cover the case of functionals with elicitable components, but we also show that one-dimensional functionals that are not elicitable can be a component of a higher order elicitable functional. In the case of the variance this is a known result. However, an important result of this paper is that spectral risk measures with a spectral measure with finite support are jointly elicitable if one adds the `correct' quantiles. A direct consequence of applied interest is that the pair (Value at Risk, Expected Shortfall) is jointly elicitable under mild conditions that are usually fulfilled in risk management applications.

Suggested Citation

  • Tobias Fissler & Johanna F. Ziegel, 2015. "Higher order elicitability and Osband's principle," Papers 1503.08123, arXiv.org, revised Sep 2015.
  • Handle: RePEc:arx:papers:1503.08123
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1503.08123
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Osband, Kent & Reichelstein, Stefan, 1985. "Information-eliciting compensation schemes," Journal of Public Economics, Elsevier, vol. 27(1), pages 107-115, June.
    2. Freddy Delbaen & Fabio Bellini & Valeria Bignozzi & Johanna F. Ziegel, 2014. "Risk measures with the CxLS property," Papers 1411.0426, arXiv.org.
    3. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    4. R. Winkler & Javier Muñoz & José Cervera & José Bernardo & Gail Blattenberger & Joseph Kadane & Dennis Lindley & Allan Murphy & Robert Oliver & David Ríos-Insua, 1996. "Scoring rules and the evaluation of probabilities," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 5(1), pages 1-60, June.
    5. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    6. Elyès Jouini & Walter Schachermayer & Nizar Touzi, 2006. "Law Invariant Risk Measures Have the Fatou Property," Post-Print halshs-00176522, HAL.
    7. Suzanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What Is the Best Risk Measure in Practice? A Comparison of Standard Measures," Working Papers hal-00921283, HAL.
    8. Susanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What is the best risk measure in practice? A comparison of standard measures," Papers 1312.1645, arXiv.org, revised Apr 2015.
    9. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    10. Engelberg, Joseph & Manski, Charles F. & Williams, Jared, 2009. "Comparing the Point Predictions and Subjective Probability Distributions of Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 30-41.
    11. Volker Krätschmer & Alexander Schied & Henryk Zähle, 2014. "Comparative and qualitative robustness for law-invariant risk measures," Finance and Stochastics, Springer, vol. 18(2), pages 271-295, April.
    12. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Post-Print hal-00413729, HAL.
    13. Volker Kratschmer & Alexander Schied & Henryk Zahle, 2012. "Comparative and qualitative robustness for law-invariant risk measures," Papers 1204.2458, arXiv.org, revised Jan 2014.
    14. Wang, Ruodu & Ziegel, Johanna F., 2015. "Elicitable distortion risk measures: A concise proof," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 172-175.
    15. repec:hal:journl:hal-00921283 is not listed on IDEAS
    16. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    17. repec:dau:papers:123456789/342 is not listed on IDEAS
    18. Krätschmer, Volker & Schied, Alexander & Zähle, Henryk, 2012. "Qualitative and infinitesimal robustness of tail-dependent statistical functionals," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 35-47, January.
    19. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Véronique Maume-Deschamps & Didier Rullière & Khalil Said, 2017. "Multivariate Extensions Of Expectiles Risk Measures," Working Papers hal-01367277, HAL.
    2. Rafael Frongillo & Ian A. Kash, 2015. "Elicitation Complexity of Statistical Properties," Papers 1506.07212, arXiv.org, revised Aug 2020.
    3. Gordy, Michael B. & McNeil, Alexander J., 2020. "Spectral backtests of forecast distributions with application to risk management," Journal of Banking & Finance, Elsevier, vol. 116(C).
    4. Werner Ehm & Tilmann Gneiting & Alexander Jordan & Fabian Krüger, 2016. "Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 505-562, June.
    5. Yannick Armenti & Stéphane Crépey & Samuel Drapeau & Antonis Papapantoleon, 2018. "Multivariate Shortfall Risk Allocation and Systemic Risk," Working Papers hal-01764398, HAL.
    6. Matteo Burzoni & Ilaria Peri & Chiara Maria Ruffo, 2016. "On the properties of the Lambda value at risk: robustness, elicitability and consistency," Papers 1603.09491, arXiv.org, revised Feb 2017.
    7. Hong Shaopeng, 2020. "Generalized Autoregressive Score asymmetric Laplace Distribution and Extreme Downward Risk Prediction," Papers 2008.01277, arXiv.org, revised Oct 2020.
    8. Alex Golodnikov & Viktor Kuzmenko & Stan Uryasev, 2019. "CVaR Regression Based on the Relation between CVaR and Mixed-Quantile Quadrangles," JRFM, MDPI, vol. 12(3), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fissler Tobias & Ziegel Johanna F., 2021. "On the elicitability of range value at risk," Statistics & Risk Modeling, De Gruyter, vol. 38(1-2), pages 25-46, January.
    2. Tobias Fissler & Jana Hlavinová & Birgit Rudloff, 2021. "Elicitability and identifiability of set-valued measures of systemic risk," Finance and Stochastics, Springer, vol. 25(1), pages 133-165, January.
    3. Ruodu Wang & Johanna F. Ziegel, 2014. "Distortion Risk Measures and Elicitability," Papers 1405.3769, arXiv.org, revised May 2014.
    4. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    5. Tobias Fissler & Johanna F. Ziegel, 2019. "Evaluating Range Value at Risk Forecasts," Papers 1902.04489, arXiv.org, revised Nov 2020.
    6. Krätschmer Volker & Schied Alexander & Zähle Henryk, 2015. "Quasi-Hadamard differentiability of general risk functionals and its application," Statistics & Risk Modeling, De Gruyter, vol. 32(1), pages 25-47, April.
    7. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    8. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    9. Johanna F. Ziegel, 2013. "Coherence and elicitability," Papers 1303.1690, arXiv.org, revised Mar 2014.
    10. Marcelo Brutti Righi & Fernanda Maria Muller & Marlon Ruoso Moresco, 2017. "On a robust risk measurement approach for capital determination errors minimization," Papers 1707.09829, arXiv.org, revised Oct 2020.
    11. Natalia Nolde & Johanna F. Ziegel, 2016. "Elicitability and backtesting: Perspectives for banking regulation," Papers 1608.05498, arXiv.org, revised Feb 2017.
    12. Matteo Burzoni & Ilaria Peri & Chiara Maria Ruffo, 2016. "On the properties of the Lambda value at risk: robustness, elicitability and consistency," Papers 1603.09491, arXiv.org, revised Feb 2017.
    13. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    14. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    15. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    16. Ruodu Wang & Yunran Wei, 2020. "Risk functionals with convex level sets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1337-1367, October.
    17. Koch-Medina Pablo & Munari Cosimo, 2014. "Law-invariant risk measures: Extension properties and qualitative robustness," Statistics & Risk Modeling, De Gruyter, vol. 31(3-4), pages 1-22, December.
    18. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    19. Marcelo Brutti Righi & Marlon Ruoso Moresco, 2020. "Inf-convolution and optimal risk sharing with countable sets of risk measures," Papers 2003.05797, arXiv.org, revised Mar 2022.
    20. M. Burzoni & I. Peri & C. M. Ruffo, 2017. "On the properties of the Lambda value at risk: robustness, elicitability and consistency," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1735-1743, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1503.08123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.