IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1406.3112.html
   My bibliography  Save this paper

Martingale approach to optimal portfolio-consumption problems in Markov-modulated pure-jump models

Author

Listed:
  • Oscar Lopez
  • Rafael Serrano

Abstract

We study optimal investment strategies that maximize expected utility from consumption and terminal wealth in a pure-jump asset price model with Markov-modulated (regime switching) jump-size distributions. We give sufficient conditions for existence of optimal policies and find closed-form expressions for the optimal value function for agents with logarithmic and fractional power (CRRA) utility in the case of two-state Markov chains. The main tools are convex duality techniques, stochastic calculus for pure-jump processes and explicit formulae for the moments of telegraph processes with Markov-modulated random jumps.

Suggested Citation

  • Oscar Lopez & Rafael Serrano, 2014. "Martingale approach to optimal portfolio-consumption problems in Markov-modulated pure-jump models," Papers 1406.3112, arXiv.org.
  • Handle: RePEc:arx:papers:1406.3112
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1406.3112
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Hua & Pearson, Neil D., 1991. "Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite dimensional case," Journal of Economic Theory, Elsevier, vol. 54(2), pages 259-304, August.
    2. Goll, Thomas & Kallsen, Jan, 2000. "Optimal portfolios for logarithmic utility," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 31-48, September.
    3. Nikita Ratanov & Alexander Melnikov, 2007. "On Financial Markets Based on Telegraph Processes," Papers 0712.3428, arXiv.org.
    4. Nicole Bäuerle & Ulrich Rieder, 2007. "Portfolio Optimization With Jumps And Unobservable Intensity Process," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 205-224, April.
    5. Robert J. Elliott & Tak Kuen Siu, 2013. "Option Pricing and Filtering with Hidden Markov-Modulated Pure-Jump Processes," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(1), pages 1-25, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mauricio Junca & Rafael Serrano, 2014. "Utility maximization in pure-jump models driven by marked point processes and nonlinear wealth dynamics," Papers 1411.1103, arXiv.org, revised Sep 2015.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauricio Junca & Rafael Serrano, 2014. "Utility maximization in pure-jump models driven by marked point processes and nonlinear wealth dynamics," Papers 1411.1103, arXiv.org, revised Sep 2015.
    2. Gerrard, Russell & Kyriakou, Ioannis & Nielsen, Jens Perch & Vodička, Peter, 2023. "On optimal constrained investment strategies for long-term savers in stochastic environments and probability hedging," European Journal of Operational Research, Elsevier, vol. 307(2), pages 948-962.
    3. Rafael Serrano & Camilo Castillo, 2018. "ALM for insurers with multiple underwriting lines and portfolio constraints: a Lagrangian duality approach," Papers 1810.08466, arXiv.org, revised Aug 2021.
    4. Suhan Altay & Katia Colaneri & Zehra Eksi, 2017. "Portfolio optimization for a large investor controlling market sentiment under partial information," Papers 1706.03567, arXiv.org.
    5. Bernard Dumas & Andrew Lyasoff, 2012. "Incomplete-Market Equilibria Solved Recursively on an Event Tree," Journal of Finance, American Finance Association, vol. 67(5), pages 1897-1941, October.
    6. Thai Nguyen & Mitja Stadje, 2020. "Utility maximization under endogenous pricing," Papers 2005.04312, arXiv.org, revised Mar 2024.
    7. Carole Bernard & Franck Moraux & Ludger R�schendorf & Steven Vanduffel, 2015. "Optimal payoffs under state-dependent preferences," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1157-1173, July.
    8. Jun Yu, 2014. "Optimal Asset-Liability Management for an Insurer Under Markov Regime Switching Jump-Diffusion Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(4), pages 317-330, November.
    9. Robert Elliott & Tak Siu, 2015. "Asset Pricing Using Trading Volumes in a Hidden Regime-Switching Environment," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(2), pages 133-149, May.
    10. Ioannis Karatzas & Gordan Zitkovic, 2007. "Optimal consumption from investment and random endowment in incomplete semimartingale markets," Papers 0706.0051, arXiv.org.
    11. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    12. Siu, Tak Kuen, 2023. "European option pricing with market frictions, regime switches and model uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 233-250.
    13. Schwartz, Eduardo S & Tebaldi, Claudio, 2004. "Illiquid Assets and Optimal Portfolio Choice," University of California at Los Angeles, Anderson Graduate School of Management qt7q65t12x, Anderson Graduate School of Management, UCLA.
    14. Julien Hugonnier & Dmitry Kramkov, 2004. "Optimal investment with random endowments in incomplete markets," Papers math/0405293, arXiv.org.
    15. Rama Cont & Peter Tankov, 2009. "Constant Proportion Portfolio Insurance In The Presence Of Jumps In Asset Prices," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 379-401, July.
    16. Wiesemann, Thomas, 1996. "Managing a value-preserving portfolio over time," European Journal of Operational Research, Elsevier, vol. 91(2), pages 274-283, June.
    17. Christoph Czichowsky & Walter Schachermayer, 2014. "Duality Theory for Portfolio Optimisation under Transaction Costs," Papers 1408.5989, arXiv.org.
    18. Tak Kuen Siu & Robert J. Elliott, 2019. "Hedging Options In A Doubly Markov-Modulated Financial Market Via Stochastic Flows," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-41, December.
    19. Melenberg, B. & Werker, B.J.M., 1996. "On the Pricing of Options in Incomplete Markets," Discussion Paper 1996-19, Tilburg University, Center for Economic Research.
    20. Zapatero, Fernando, 1995. "Equilibrium asset prices and exchange rates," Journal of Economic Dynamics and Control, Elsevier, vol. 19(4), pages 787-811, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1406.3112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.