IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1402.2198.html
   My bibliography  Save this paper

Multi-scale Representation of High Frequency Market Liquidity

Author

Listed:
  • Anton Golub
  • Gregor Chliamovitch
  • Alexandre Dupuis
  • Bastien Chopard

Abstract

We introduce an event based framework of directional changes and overshoots to map continuous financial data into the so-called Intrinsic Network - a state based discretisation of intrinsically dissected time series. Defining a method for state contraction of Intrinsic Network, we show that it has a consistent hierarchical structure that allows for multi-scale analysis of financial data. We define an information theoretic measurement termed Liquidity that characterises the unlikeliness of price trajectories and argue that the new metric has the ability to detect and predict stress in financial markets. We show empirical examples within the Foreign Exchange market where the new measure not only quantifies liquidity but also acts as an early warning signal.

Suggested Citation

  • Anton Golub & Gregor Chliamovitch & Alexandre Dupuis & Bastien Chopard, 2014. "Multi-scale Representation of High Frequency Market Liquidity," Papers 1402.2198, arXiv.org.
  • Handle: RePEc:arx:papers:1402.2198
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1402.2198
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Alexandros Gabrielsen & Massimiliano Marzo & Paolo Zagaglia, 2011. "Measuring market liquidity: An introductory survey," Papers 1112.6169, arXiv.org.
    2. Galluccio, S. & Caldarelli, G. & Marsili, M. & Zhang, Y.-C., 1997. "Scaling in currency exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 423-436.
    3. J. B. Glattfelder & A. Dupuis & R. B. Olsen, 2010. "Patterns in high-frequency FX data: discovery of 12 empirical scaling laws," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 599-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monira Essa Aloud, 2016. "Time Series Analysis Indicators under Directional Changes: The Case of Saudi Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 55-64.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1402.2198. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.