IDEAS home Printed from
   My bibliography  Save this paper

Second order statistics characterization of Hawkes processes and non-parametric estimation


  • Emmanuel Bacry
  • Jean-Francois Muzy


We show that the jumps correlation matrix of a multivariate Hawkes process is related to the Hawkes kernel matrix through a system of Wiener-Hopf integral equations. A Wiener-Hopf argument allows one to prove that this system (in which the kernel matrix is the unknown) possesses a unique causal solution and consequently that the second-order properties fully characterize a Hawkes process. The numerical inversion of this system of integral equations allows us to propose a fast and efficient method, which main principles were initially sketched in [Bacry and Muzy, 2013], to perform a non-parametric estimation of the Hawkes kernel matrix. In this paper, we perform a systematic study of this non-parametric estimation procedure in the general framework of marked Hawkes processes. We describe precisely this procedure step by step. We discuss the estimation error and explain how the values for the main parameters should be chosen. Various numerical examples are given in order to illustrate the broad possibilities of this estimation procedure ranging from 1-dimensional (power-law or non positive kernels) up to 3-dimensional (circular dependence) processes. A comparison to other non-parametric estimation procedures is made. Applications to high frequency trading events in financial markets and to earthquakes occurrence dynamics are finally considered.

Suggested Citation

  • Emmanuel Bacry & Jean-Francois Muzy, 2014. "Second order statistics characterization of Hawkes processes and non-parametric estimation," Papers 1401.0903,, revised Feb 2015.
  • Handle: RePEc:arx:papers:1401.0903

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
    2. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Marcello Rambaldi & Emmanuel Bacry & Fabrizio Lillo, 2016. "The role of volume in order book dynamics: a multivariate Hawkes process analysis," Papers 1602.07663,

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1401.0903. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.