IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper

Learning from the past, predicting the statistics for the future, learning an evolving system

  • Daniel Levin
  • Terry Lyons
  • Hao Ni
Registered author(s):

    We bring the theory of rough paths to the study of non-parametric statistics on streamed data. We discuss the problem of regression where the input variable is a stream of information, and the dependent response is also (potentially) a stream. A certain graded feature set of a stream, known in the rough path literature as the signature, has a universality that allows formally, linear regression to be used to characterise the functional relationship between independent explanatory variables and the conditional distribution of the dependent response. This approach, via linear regression on the signature of the stream, is almost totally general, and yet it still allows explicit computation. The grading allows truncation of the feature set and so leads to an efficient local description for streams (rough paths). In the statistical context this method offers potentially significant, even transformational dimension reduction. By way of illustration, our approach is applied to stationary time series including the familiar AR model and ARCH model. In the numerical examples we examined, our predictions achieve similar accuracy to the Gaussian Process (GP) approach with much lower computational cost especially when the sample size is large.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/1309.0260
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number 1309.0260.

    as
    in new window

    Length:
    Date of creation: Sep 2013
    Date of revision: Mar 2016
    Handle: RePEc:arx:papers:1309.0260
    Contact details of provider: Web page: http://arxiv.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
    2. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1309.0260. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.