IDEAS home Printed from
   My bibliography  Save this paper

Extracting information from the signature of a financial data stream


  • Lajos Gergely Gyurk'o
  • Terry Lyons
  • Mark Kontkowski
  • Jonathan Field


Market events such as order placement and order cancellation are examples of the complex and substantial flow of data that surrounds a modern financial engineer. New mathematical techniques, developed to describe the interactions of complex oscillatory systems (known as the theory of rough paths) provides new tools for analysing and describing these data streams and extracting the vital information. In this paper we illustrate how a very small number of coefficients obtained from the signature of financial data can be sufficient to classify this data for subtle underlying features and make useful predictions. This paper presents financial examples in which we learn from data and then proceed to classify fresh streams. The classification is based on features of streams that are specified through the coordinates of the signature of the path. At a mathematical level the signature is a faithful transform of a multidimensional time series. (Ben Hambly and Terry Lyons \cite{uniqueSig}), Hao Ni and Terry Lyons \cite{NiLyons} introduced the possibility of its use to understand financial data and pointed to the potential this approach has for machine learning and prediction. We evaluate and refine these theoretical suggestions against practical examples of interest and present a few motivating experiments which demonstrate information the signature can easily capture in a non-parametric way avoiding traditional statistical modelling of the data. In the first experiment we identify atypical market behaviour across standard 30-minute time buckets sampled from the WTI crude oil future market (NYMEX). The second and third experiments aim to characterise the market "impact" of and distinguish between parent orders generated by two different trade execution algorithms on the FTSE 100 Index futures market listed on NYSE Liffe.

Suggested Citation

  • Lajos Gergely Gyurk'o & Terry Lyons & Mark Kontkowski & Jonathan Field, 2013. "Extracting information from the signature of a financial data stream," Papers 1307.7244,, revised Jul 2014.
  • Handle: RePEc:arx:papers:1307.7244

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Daniel Levin & Terry Lyons & Hao Ni, 2013. "Learning from the past, predicting the statistics for the future, learning an evolving system," Papers 1309.0260,, revised Mar 2016.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1307.7244. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.