IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1305.6762.html
   My bibliography  Save this paper

Hedging without sweat: a genetic programming approach

Author

Listed:
  • Terje Lensberg
  • Klaus Reiner Schenk-Hopp'e

Abstract

Hedging in the presence of transaction costs leads to complex optimization problems. These problems typically lack closed-form solutions, and their implementation relies on numerical methods that provide hedging strategies for specific parameter values. In this paper we use a genetic programming algorithm to derive explicit formulas for near-optimal hedging strategies under nonlinear transaction costs. The strategies are valid over a large range of parameter values and require no information about the structure of the optimal hedging strategy.

Suggested Citation

  • Terje Lensberg & Klaus Reiner Schenk-Hopp'e, 2013. "Hedging without sweat: a genetic programming approach," Papers 1305.6762, arXiv.org.
  • Handle: RePEc:arx:papers:1305.6762
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1305.6762
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Umut Çetin & L. C. G. Rogers, 2007. "Modeling Liquidity Effects In Discrete Time," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 15-29.
    2. Monoyios, Michael, 2004. "Option pricing with transaction costs using a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 889-913, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Palczewski, Jan & Poulsen, Rolf & Schenk-Hoppé, Klaus Reiner & Wang, Huamao, 2015. "Dynamic portfolio optimization with transaction costs and state-dependent drift," European Journal of Operational Research, Elsevier, vol. 243(3), pages 921-931.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1305.6762. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.