IDEAS home Printed from
   My bibliography  Save this paper

Inference of Extreme Synchrony with an Entropy Measure on a Bipartite Network


  • Aki-Hiro Sato


This article proposes a method to quantify the structure of a bipartite graph using a network entropy per link. The network entropy of a bipartite graph with random links is calculated both numerically and theoretically. As an application of the proposed method to analyze collective behavior, the affairs in which participants quote and trade in the foreign exchange market are quantified. The network entropy per link is found to correspond to the macroeconomic situation. A finite mixture of Gumbel distributions is used to fit the empirical distribution for the minimum values of network entropy per link in each week. The mixture of Gumbel distributions with parameter estimates by segmentation procedure is verified by the Kolmogorov--Smirnov test. The finite mixture of Gumbel distributions that extrapolate the empirical probability of extreme events has explanatory power at a statistically significant level.

Suggested Citation

  • Aki-Hiro Sato, 2012. "Inference of Extreme Synchrony with an Entropy Measure on a Bipartite Network," Papers 1207.4860,, revised Oct 2013.
  • Handle: RePEc:arx:papers:1207.4860

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Milaković, Mishael & Alfarano, Simone & Lux, Thomas, 2008. "The small core of the German corporate board network," Kiel Working Papers 1446, Kiel Institute for the World Economy (IfW).
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1207.4860. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.