IDEAS home Printed from
   My bibliography  Save this paper

Inventory Management with Partially Observed Nonstationary Demand


  • Erhan Bayraktar
  • Mike Ludkovski


We consider a continuous-time model for inventory management with Markov modulated non-stationary demands. We introduce active learning by assuming that the state of the world is unobserved and must be inferred by the manager. We also assume that demands are observed only when they are completely met. We first derive the explicit filtering equations and pass to an equivalent fully observed impulse control problem in terms of the sufficient statistics, the a posteriori probability process and the current inventory level. We then solve this equivalent formulation and directly characterize an optimal inventory policy. We also describe a computational procedure to calculate the value function and the optimal policy and present two numerical illustrations.

Suggested Citation

  • Erhan Bayraktar & Mike Ludkovski, 2012. "Inventory Management with Partially Observed Nonstationary Demand," Papers 1206.6283,
  • Handle: RePEc:arx:papers:1206.6283

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. William S. Lovejoy, 1990. "Myopic Policies for Some Inventory Models with Uncertain Demand Distributions," Management Science, INFORMS, vol. 36(6), pages 724-738, June.
    2. Katy S. Azoury, 1985. "Bayes Solution to Dynamic Inventory Models Under Unknown Demand Distribution," Management Science, INFORMS, vol. 31(9), pages 1150-1160, September.
    3. Bayraktar, Erhan & Ludkovski, Michael, 2009. "Sequential tracking of a hidden Markov chain using point process observations," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1792-1822, June.
    4. Martin A. Lariviere & Evan L. Porteus, 1999. "Stalking Information: Bayesian Inventory Management with Unobserved Lost Sales," Management Science, INFORMS, vol. 45(3), pages 346-363, March.
    5. Yossi Aviv & Amit Pazgal, 2005. "A Partially Observed Markov Decision Process for Dynamic Pricing," Management Science, INFORMS, vol. 51(9), pages 1400-1416, September.
    6. Arjas, Elja & Haara, Pentti & Norros, Ikka, 1992. "Filtering the histories of a partially observed marked point process," Stochastic Processes and their Applications, Elsevier, vol. 40(2), pages 225-250, March.
    7. James T. Treharne & Charles R. Sox, 2002. "Adaptive Inventory Control for Nonstationary Demand and Partial Information," Management Science, INFORMS, vol. 48(5), pages 607-624, May.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Alghalith, Moawia, 2013. "The interaction among production, hedging and investment decisions," Economic Modelling, Elsevier, vol. 30(C), pages 193-195.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1206.6283. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.