IDEAS home Printed from
   My bibliography  Save this article

Stalking Information: Bayesian Inventory Management with Unobserved Lost Sales


  • Martin A. Lariviere

    (Fuqua School of Business, Duke University, Durham, North Carolina 27708)

  • Evan L. Porteus

    (Stanford Business School, Stanford University, Stanford, California 94305)


Retailers are frequently uncertain about the underlying demand distribution of a new product. When taking the empirical Bayesian approach of Scarf (1959), they simultaneously stock the product over time and learn about the distribution. Assuming that unmet demand is lost and unobserved, this learning must be based on observing sales rather than demand, which differs from sales in the event of a stockout. Using the framework and results of Braden and Freimer (1991), the cumulative learning about the underlying demand distribution is captured by two parameters, a scale parameter that reflects the predicted size of the underlying market, and a shape parameter that indicates both the size of the market and the precision with which the underlying distribution is known. An important simplification result of Scarf (1960) and Azoury (1985), which allows the scale parameter to be removed from the optimization, is shown to extend to this setting. We present examples that reveal two interesting phenomena: (1) A retailer may hope that, compared to stocking out, realized demand will be strictly less than the stock level, even though stocking out would signal a stochastically larger demand distribution, and (2) it can be optimal to drop a product after a period of successful sales. We also present specific conditions under which the following results hold: (1) Investment in excess stocks to enhance learning will occur in every dynamic problem, and (2) a product is never dropped after a period of poor sales. The model is extended to multiple independent markets whose distributions depend proportionately on a single unknown parameter. We argue that smaller markets should be given better service as an effective means of acquiring information.

Suggested Citation

  • Martin A. Lariviere & Evan L. Porteus, 1999. "Stalking Information: Bayesian Inventory Management with Unobserved Lost Sales," Management Science, INFORMS, vol. 45(3), pages 346-363, March.
  • Handle: RePEc:inm:ormnsc:v:45:y:1999:i:3:p:346-363

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Katy S. Azoury, 1985. "Bayes Solution to Dynamic Inventory Models Under Unknown Demand Distribution," Management Science, INFORMS, vol. 31(9), pages 1150-1160, September.
    2. Steven A. Lippman, 1969. "Optimal Inventory Policy with Multiple Set-Up Costs," Management Science, INFORMS, vol. 16(1), pages 118-138, September.
    3. repec:wly:navres:v:41:y:1994:i:6:p:739-757 is not listed on IDEAS
    4. Frank Milne & Edwin H. Neave, 1994. "Dominance Relations Among Standardized Variables," Management Science, INFORMS, vol. 40(10), pages 1343-1352, October.
    5. repec:wly:navlog:v:7:y:1960:i:4:p:591-596 is not listed on IDEAS
    6. David J. Braden & Marshall Freimer, 1991. "Informational Dynamics of Censored Observations," Management Science, INFORMS, vol. 37(11), pages 1390-1404, November.
    7. David J. Braden & Shmuel S. Oren, 1994. "Nonlinear Pricing to Produce Information," Marketing Science, INFORMS, vol. 13(3), pages 310-326.
    8. Muhittin Oral & Michael S. Salvador & Arnold Reisman & Burton V. Dean, 1972. "On the Evaluation of Shortage Costs for Inventory Control of Finished Goods," Management Science, INFORMS, vol. 18(6), pages 344-351, February.
    9. Evan L. Porteus, 1975. "On the Optimality of Structured Policies in Countable Stage Decision Processes," Management Science, INFORMS, vol. 22(2), pages 148-157, October.
    10. William S. Lovejoy, 1993. "Suboptimal Policies, with Bounds, for Parameter Adaptive Decision Processes," Operations Research, INFORMS, vol. 41(3), pages 583-599, June.
    11. Giora Harpaz & Wayne Y. Lee & Robert L. Winkler, 1982. "Learning, Experimentation, and the Optimal Output Decisions of a Competitive Firm," Management Science, INFORMS, vol. 28(6), pages 589-603, June.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:45:y:1999:i:3:p:346-363. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Walls). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.