IDEAS home Printed from
   My bibliography  Save this paper

Duality and Convergence for Binomial Markets with Friction


  • Yan Dolinsky
  • Halil Mete Soner


We prove limit theorems for the super-replication cost of European options in a Binomial model with friction. The examples covered are markets with proportional transaction costs and the illiquid markets. The dual representation for the super-replication cost in these models are obtained and used to prove the limit theorems. In particular, the existence of the liquidity premium for the continuous time limit of the model proposed in [6] is proved. Hence, this paper extends the previous convergence result of [13] to the general non-Markovian case. Moreover, the special case of small transaction costs yields, in the continuous limit, the $G$-expectation of Peng as earlier proved by Kusuoka in [14].

Suggested Citation

  • Yan Dolinsky & Halil Mete Soner, 2011. "Duality and Convergence for Binomial Markets with Friction," Papers 1106.2095,
  • Handle: RePEc:arx:papers:1106.2095

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Umut Çetin & L. C. G. Rogers, 2007. "Modeling Liquidity Effects In Discrete Time," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 15-29.
    2. Umut Çetin & Robert A. Jarrow & Philip Protter, 2008. "Liquidity risk and arbitrage pricing theory," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 8, pages 153-183 World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Christian Bayer & Bezirgen Veliyev, 2014. "Utility Maximization In A Binomial Model With Transaction Costs: A Duality Approach Based On The Shadow Price Process," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-27.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1106.2095. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.