IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0910.2909.html

Compensating asynchrony effects in the calculation of financial correlations

Author

Listed:
  • Michael C. Munnix
  • Rudi Schafer
  • Thomas Guhr

Abstract

We present a method to compensate statistical errors in the calculation of correlations on asynchronous time series. The method is based on the assumption of an underlying time series. We set up a model and apply it to financial data to examine the decrease of calculated correlations towards smaller return intervals (Epps effect). We show that this statistical effect is a major cause of the Epps effect. Hence, we are able to quantify and to compensate it using only trading prices and trading times.

Suggested Citation

  • Michael C. Munnix & Rudi Schafer & Thomas Guhr, 2009. "Compensating asynchrony effects in the calculation of financial correlations," Papers 0910.2909, arXiv.org, revised Jul 2010.
  • Handle: RePEc:arx:papers:0910.2909
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0910.2909
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Econometric Analysis of Realised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics," Economics Papers 2002-W13, Economics Group, Nuffield College, University of Oxford, revised 18 Mar 2002.
    2. G. Bonanno & F. Lillo & R. N. Mantegna, 2001. "High-frequency cross-correlation in a set of stocks," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 96-104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    2. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    3. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    4. Henryk Gurgul & Artur Machno, 2017. "The impact of asynchronous trading on Epps effect on Warsaw Stock Exchange," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 287-301, June.
    5. Michael C. Munnix & Rudi Schafer, 2011. "A Copula Approach on the Dynamics of Statistical Dependencies in the US Stock Market," Papers 1102.1099, arXiv.org, revised Mar 2011.
    6. Münnix, Michael C. & Schäfer, Rudi, 2011. "A copula approach on the dynamics of statistical dependencies in the US stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4251-4259.
    7. Henao-Londono, Juan C. & Guhr, Thomas, 2022. "Foreign exchange markets: Price response and spread impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    8. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    9. Leonidas Sandoval Junior, 2012. "To lag or not to lag? How to compare indices of stock markets that operate at different times," Papers 1201.4586, arXiv.org, revised Jul 2013.
    10. Ruijin Du & Gaogao Dong & Lixin Tian & Minggang Wang & Guochang Fang & Shuai Shao, 2016. "Spatiotemporal Dynamics and Fitness Analysis of Global Oil Market: Based on Complex Network," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João A. Bastos & Jorge Caiado, 2014. "Clustering financial time series with variance ratio statistics," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2121-2133, December.
    2. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    3. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    4. Artur F. Tomeczek & Tomasz M. Napiórkowski, 2024. "PageRank and Regression as a Two-Step Approach to Analysing a Network of Nasdaq Firms During a Recession: Insights from Minimum Spanning Tree Topology," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 3, pages 56-69.
    5. Výrost, Tomáš, 2012. "Country effects in CEE3 stock market networks: a preliminary study," MPRA Paper 43481, University Library of Munich, Germany.
    6. Huiling Yuan & Guodong Li & Junhui Wang, 2022. "High-Frequency-Based Volatility Model with Network Structure," Papers 2204.12933, arXiv.org.
    7. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    8. Mahdi Massahi & Masoud Mahootchi & Alireza Arshadi Khamseh, 2020. "Development of an efficient cluster-based portfolio optimization model under realistic market conditions," Empirical Economics, Springer, vol. 59(5), pages 2423-2442, November.
    9. Leonidas Sandoval Junior, 2011. "Cluster formation and evolution in networks of financial market indices," Papers 1111.5069, arXiv.org.
    10. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    11. M. Wili'nski & A. Sienkiewicz & T. Gubiec & R. Kutner & Z. R. Struzik, 2013. "Structural and topological phase transitions on the German Stock Exchange," Papers 1301.2530, arXiv.org, revised Jul 2013.
    12. Tiwari, Aviral Kumar & Mutascu, Mihai Ioan & Albulescu, Claudiu Tiberiu, 2016. "Continuous wavelet transform and rolling correlation of European stock markets," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 237-256.
    13. Lahmiri, Salim, 2016. "Clustering of Casablanca stock market based on hurst exponent estimates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 310-318.
    14. Ovidiu V. Precup & Giulia Iori, 2007. "Cross-correlation Measures in the High-frequency Domain," The European Journal of Finance, Taylor & Francis Journals, vol. 13(4), pages 319-331.
    15. Fiedor, Paweł, 2014. "Sector strength and efficiency on developed and emerging financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 180-188.
    16. Gustavo Peralta, 2015. "Network-based Measures as Leading Indicators of Market Instability: The case of the Spanish Stock," CNMV Working Papers CNMV Working Papers no 59, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    17. Erick Treviño Aguilar, 2020. "The interdependency structure in the Mexican stock exchange: A network approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-31, October.
    18. Andreea B. Dragut, 2012. "Stock Data Clustering and Multiscale Trend Detection," Methodology and Computing in Applied Probability, Springer, vol. 14(1), pages 87-105, March.
    19. Zhang, Xin & Podobnik, Boris & Kenett, Dror Y. & Eugene Stanley, H., 2014. "Systemic risk and causality dynamics of the world international shipping market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 43-53.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0910.2909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.