IDEAS home Printed from
   My bibliography  Save this paper

Conditional Value-at-Risk Constraint and Loss Aversion Utility Functions


  • Laetitia Andrieu

    (EDF R&D)

  • Michel De Lara


  • Babacar Seck



We provide an economic interpretation of the practice consisting in incorporating risk measures as constraints in a classic expected return maximization problem. For what we call the infimum of expectations class of risk measures, we show that if the decision maker (DM) maximizes the expectation of a random return under constraint that the risk measure is bounded above, he then behaves as a ``generalized expected utility maximizer'' in the following sense. The DM exhibits ambiguity with respect to a family of utility functions defined on a larger set of decisions than the original one; he adopts pessimism and performs first a minimization of expected utility over this family, then performs a maximization over a new decisions set. This economic behaviour is called ``Maxmin under risk'' and studied by Maccheroni (2002). This economic interpretation allows us to exhibit a loss aversion factor when the risk measure is the Conditional Value-at-Risk.

Suggested Citation

  • Laetitia Andrieu & Michel De Lara & Babacar Seck, 2009. "Conditional Value-at-Risk Constraint and Loss Aversion Utility Functions," Papers 0906.3425,
  • Handle: RePEc:arx:papers:0906.3425

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Dentcheva, Darinka & Ruszczynski, Andrzej, 2006. "Portfolio optimization with stochastic dominance constraints," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 433-451, February.
    2. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0906.3425. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.