IDEAS home Printed from
   My bibliography  Save this paper

An exploratory study towards applying and demystifying deep learning classification on behavioral big data


  • DE CNUDDE, Sofie
  • MARTENS, David
  • PROVOST, Foster


The superior performance of deep learning algorithms in fields such as computer vision and natural language processing has fueled an increased interest towards these algorithms in both research and in practice. Ever since, many studies have applied these algorithms to other machine learning contexts with other types of data in the hope of achieving comparable superior performance. This study departs from the latter motivation and investigates the application of deep learning classification techniques on big behavioral data while comparing its predictive performance with 11 widely-used shallow classifiers. In addition to the application on a new type of data and a structured comparison of its performance with commonlyused classifiers, this study attempts to shed light onto when and why deep learning techniques perform better. Regarding the specific characteristics of applying deep learning on this unique class of data, we demonstrate that an unsupervised pretraining step does not improve classification performance and that a tanh nonlinearity achieves the best predictive performance. The results from applying deep learning on 15 big behavioral data sets demonstrate as good as or better results compared to traditionally-used, shallow classifiers. However, no significant performance improvement can be recorded. Investigating when deep learning performs better, we find that worse performance is obtained for data sets with low signal-from-noise separability. In order to gain insight into why deep learning generally performs well on this type of data, we investigate the value of the distributed, hierarchical characteristic of the learning process. The neurons in the distributed representation seem to identify more nuances in the many behavioral features as compared to shallow classifiers. We demonstrate these nuances in an intuitive manner and validate them through comparison with feature engineering techniques. This is the first study to apply and validate the use of nonlinear deep learning classification on fine-grained, human-generated data while proposing efficient con guration settings for its practical implementation. As deep learning classification is often characterized by being a black-box approach, we also provide a first attempt towards the disentanglement regarding when and why these techniques perform well.

Suggested Citation

  • DE CNUDDE, Sofie & MARTENS, David & PROVOST, Foster, 2018. "An exploratory study towards applying and demystifying deep learning classification on behavioral big data," Working Papers 2018002, University of Antwerp, Faculty of Business and Economics.
  • Handle: RePEc:ant:wpaper:2018002

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. DE CNUDDE, Sofie & MARTENS, David & EVGENIOU, Theodoros & PROVOST, Foster, 2017. "A benchmarking study of classification techniques for behavioral data," Working Papers 2017005, University of Antwerp, Faculty of Business and Economics.
    2. Martens, David & Baesens, Bart & Van Gestel, Tony & Vanthienen, Jan, 2007. "Comprehensible credit scoring models using rule extraction from support vector machines," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1466-1476, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ant:wpaper:2018002. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joeri Nys). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.