IDEAS home Printed from https://ideas.repec.org/p/anp/en2009/136.html
   My bibliography  Save this paper

Dynamic Hedging inMarkov Regimes Switching

Author

Listed:
  • Wagner Oliveira Monteiro
  • Rodrigo De Losso da Silveira Bueno

Abstract

No abstract is available for this item.

Suggested Citation

  • Wagner Oliveira Monteiro & Rodrigo De Losso da Silveira Bueno, 2011. "Dynamic Hedging inMarkov Regimes Switching," Anais do XXXVII Encontro Nacional de Economia [Proceedings of the 37th Brazilian Economics Meeting] 136, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
  • Handle: RePEc:anp:en2009:136
    as

    Download full text from publisher

    File URL: http://www.anpec.org.br/encontro2009/inscricao.on/arquivos/000-68e84d8762a40d8a8da76cd664a16b9d.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. John Cotter & Jim Hanly, 2006. "Reevaluating hedging performance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(7), pages 677-702, July.
    2. Steve W. Martinez & Kelly D. Zering, 1992. "Optimal Dynamic Hedging Decisions for Grain Producers," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 74(4), pages 879-888.
    3. John K. M. Kuwornu & W. Erno Kuiper & Joost M. E. Pennings & Matthew T. G. Meulenberg, 2005. "Time‐varying Hedge Ratios: A Principal‐agent Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 56(3), pages 417-432, December.
    4. Tobias Rydén & Timo Teräsvirta & Stefan Åsbrink, 1998. "Stylized facts of daily return series and the hidden Markov model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(3), pages 217-244.
    5. Hsiang-Tai Lee & Jonathan Yoder, 2007. "A bivariate Markov regime switching GARCH approach to estimate time varying minimum variance hedge ratios," Applied Economics, Taylor & Francis Journals, vol. 39(10), pages 1253-1265.
    6. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    7. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
    8. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    9. Giorgio Valente & Lucio Sarno, 2005. "Modelling and forecasting stock returns: exploiting the futures market, regime shifts and international spillovers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 345-376.
    10. Yeh, Sally C & Gannon, Gerard L, 2000. "Comparing Trading Performance of the Constant and Dynamic Hedge Models: A Note," Review of Quantitative Finance and Accounting, Springer, vol. 14(2), pages 155-160, March.
    11. Tae H. Park & Lorne N. Switzer, 1995. "Bivariate GARCH estimation of the optimal hedge ratios for stock index futures: A note," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(1), pages 61-67, February.
    12. Wenling Yang & David E. Allen, 2005. "Multivariate GARCH hedge ratios and hedging effectiveness in Australian futures markets," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 45(2), pages 301-321, July.
    13. Li, W K & Ling, Shiqing & McAleer, Michael, 2002. "Recent Theoretical Results for Time Series Models with GARCH Errors," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 245-269, July.
    14. Anil K. Bera & Philip Garcia & Jae-Sun Roh, 1997. "Estimation of Time-Varying Hedge Ratios for Corn and Soybeans: BGARCH and Random Coefficient Approaches," Finance 9712007, University Library of Munich, Germany.
    15. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    16. W. K. Li & Shiqing Ling & Michael McAleer, 2002. "Recent Theoretical Results for Time Series Models with GARCH Errors," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 245-269, July.
    17. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    18. Chris Brooks & Olan T. Henry & Gita Persand, 2002. "The Effect of Asymmetries on Optimal Hedge Ratios," The Journal of Business, University of Chicago Press, vol. 75(2), pages 333-352, April.
    19. John Heaney & Geoffrey Poitras, 1991. "Estimation of the optimal hedge ratio, expected utility, and ordinary least squares regression," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 11(5), pages 603-612, October.
    20. Ronald W. Anderson & Jean-Pierre Danthine, 1983. "The Time Pattern of Hedging and the Volatility of Futures Prices," Review of Economic Studies, Oxford University Press, vol. 50(2), pages 249-266.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Hsiang-Tai, 2010. "Regime switching correlation hedging," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2728-2741, November.
    2. Kuang-Liang Chang, 2011. "The optimal value-at-risk hedging strategy under bivariate regime switching ARCH framework," Applied Economics, Taylor & Francis Journals, vol. 43(21), pages 2627-2640.
    3. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Ubukata, Masato, 2018. "Dynamic hedging performance and downside risk: Evidence from Nikkei index futures," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 270-281.
    5. Bessler, Wolfgang & Leonhardt, Alexander & Wolff, Dominik, 2016. "Analyzing hedging strategies for fixed income portfolios: A Bayesian approach for model selection," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 239-256.
    6. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    7. Philippe Charlot & Vêlayoudom Marimoutou, 2008. "Hierarchical hidden Markov structure for dynamic correlations: the hierarchical RSDC model," Working Papers halshs-00285866, HAL.
    8. Su, EnDer, 2017. "Stock index hedging using a trend and volatility regime-switching model involving hedging cost," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 233-254.
    9. Haas, Markus & Mittnik, Stefan, 2008. "Multivariate regimeswitching GARCH with an application to international stock markets," CFS Working Paper Series 2008/08, Center for Financial Studies (CFS).
    10. Francesco Pattarin & Riccardo Ferretti, 2004. "The Mib30 index and futures relationship: econometric analysis and implications for hedging," Applied Financial Economics, Taylor & Francis Journals, vol. 14(18), pages 1281-1289.
    11. Yi-Ting Chen, 2008. "A unified approach to standardized-residuals-based correlation tests for GARCH-type models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 111-133.
    12. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    13. Chang, C-L. & McAleer, M.J. & Tansuchat, R., 2009. "Modelling conditional correlations for risk diversification in crude oil markets," Econometric Institute Research Papers EI 2009-11, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Ubukata, Masato & Watanabe, Toshiaki, 2015. "Evaluating the performance of futures hedging using multivariate realized volatility," Journal of the Japanese and International Economies, Elsevier, vol. 38(C), pages 148-171.
    15. Michael McAleer, 2009. "The Ten Commandments For Optimizing Value‐At‐Risk And Daily Capital Charges," Journal of Economic Surveys, Wiley Blackwell, vol. 23(5), pages 831-849, December.
    16. Michael S. Haigh & Matthew T. Holt, 2002. "Combining time-varying and dynamic multi-period optimal hedging models," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 29(4), pages 471-500, December.
    17. Martínez, Beatriz & Torró, Hipòlit, 2015. "European natural gas seasonal effects on futures hedging," Energy Economics, Elsevier, vol. 50(C), pages 154-168.
    18. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2019. "Regime switching dynamic correlations for asymmetric and fat-tailed conditional returns," Journal of Econometrics, Elsevier, vol. 213(2), pages 493-515.
    19. Rozaimah Zainudin & Roselee Shah Shaharudin, 2011. "Multi Mean Garch Approach to Evaluating Hedging Performance in the Crude Palm Oil Futures Market," Asian Academy of Management Journal of Accounting and Finance (AAMJAF), Penerbit Universiti Sains Malaysia, vol. 7(1), pages 111-130.
    20. Kin-Yip Ho & Albert K Tsui, 2008. "Volatility Dynamics in Foreign Exchange Rates : Further Evidence from the Malaysian Ringgit and Singapore Dollar," Finance Working Papers 22571, East Asian Bureau of Economic Research.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anp:en2009:136. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rodrigo Zadra Armond). General contact details of provider: http://edirc.repec.org/data/anpecea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.