IDEAS home Printed from https://ideas.repec.org/p/ags/eaae14/182978.html
   My bibliography  Save this paper

Analysis of efficiency in organic wine and olive farms in the Italian FADN dataset

Author

Listed:
  • Galluzzo, Nicola

Abstract

Over the recent years there has been in Italy a growth of organic farms with a positive consequence in increasing the farmer’s income by a direct commercialization of products. The analysis has used a quantitative model of investigation in a dataset of organic and conventional farms belonging to the Farm Accountancy Data Network (FADN). The organic farms have underscored an inferior level of efficiency than conventional ones underling as land capital and labor force may be two pivotal variables in improving the level of economic and allocative efficiency in organic farms.

Suggested Citation

  • Galluzzo, Nicola, 2014. "Analysis of efficiency in organic wine and olive farms in the Italian FADN dataset," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182978, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaae14:182978
    DOI: 10.22004/ag.econ.182978
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/182978/files/Galluzzo_14th_EAAE_Congress_-_Poster_paper%20_1_.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.182978?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    2. Laure Latruffe & Céline Nauges, 2014. "Technical efficiency and conversion to organic farming: the case of France," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(2), pages 227-253.
    3. Cisilino, Federica & Madau, Fabio A., 2007. "Organic and Conventional Farming: a Comparison Analysis through the Italian FADN," MPRA Paper 21786, University Library of Munich, Germany.
    4. Madau, Fabio A., 2007. "Technical Efficiency in Organic and Conventional Farming: Evidence from Italian Cereal Farms," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 8(1), pages 1-17, January.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Battese, George E., 1992. "Frontier production functions and technical efficiency: a survey of empirical applications in agricultural economics," Agricultural Economics, Blackwell, vol. 7(3-4), pages 185-208, October.
    7. Tzouvelekas, Vangelis & Pantzios, Christos J. & Fotopoulos, Christos, 2002. "Empirical Evidence of Technical Efficiency Levels in Greek Organic and Conventional Farms," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 3(2), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galluzzo Nicola, 2020. "A Technical Efficiency Analysis of Financial Subsidies Allocated by the Cap in Romanian Farms Using Stochastic Frontier Analysis," European Countryside, Sciendo, vol. 12(4), pages 494-505, December.
    2. Madau, Fabio A., 2012. "Technical and scale efficiency in the Italian Citrus Farming: A comparison between Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis(DEA) Models," MPRA Paper 41403, University Library of Munich, Germany.
    3. Djokoto, Justice G., 2015. "Technical efficiency of organic agriculture: a quantitative review," Studies in Agricultural Economics, Research Institute for Agricultural Economics, vol. 117(2), pages 1-11, August.
    4. Galluzzo Nicola, 2018. "A Non-Parametric Analysis of Technical Efficiency in Bulgarian Farms Using the Fadn Dataset," European Countryside, Sciendo, vol. 10(1), pages 58-73, March.
    5. Ruiqing Yuan & Xiangyang Xu & Yanli Wang & Jiayi Lu & Ying Long, 2024. "Evaluating Carbon-Emission Efficiency in China’s Construction Industry: An SBM-Model Analysis of Interprovincial Building Heating," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    6. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    7. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    8. Helmi Hammami & Thanh Ngo & David Tripe & Dinh-Tri Vo, 2022. "Ranking with a Euclidean common set of weights in data envelopment analysis: with application to the Eurozone banking sector," Annals of Operations Research, Springer, vol. 311(2), pages 675-694, April.
    9. Bogetoft, Peter & Leth Hougaard, Jens, 2004. "Super efficiency evaluations based on potential slack," European Journal of Operational Research, Elsevier, vol. 152(1), pages 14-21, January.
    10. Davtalab-Olyaie, Mostafa & Begen, Mehmet A. & Yang, Zijiang & Asgharian, Masoud, 2024. "Incentivization in centrally managed systems: Inconsistencies resolution," Omega, Elsevier, vol. 129(C).
    11. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    12. Xiao Zhang & Di Wang, 2023. "Beyond the Ecological Boundary: A Quasi-Natural Experiment on the Impact of National Marine Parks on Eco-Efficiency in Coastal Cities," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    13. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    14. da Silva, Aneirson Francisco & Miranda, Rafael de Carvalho & Marins, Fernando Augusto Silva & Dias, Erica Ximenes, 2024. "A new multiple criteria data envelopment analysis with variable return to scale: Applying bi-dimensional representation and super-efficiency analysis," European Journal of Operational Research, Elsevier, vol. 314(1), pages 308-322.
    15. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    16. Alireza Amirteimoori & Sohrab Kordrostami, 2012. "A distance-based measure of super efficiency in data envelopment analysis: an application to gas companies," Journal of Global Optimization, Springer, vol. 54(1), pages 117-128, September.
    17. Lin, L.C. & Hong, C.H., 2006. "Operational performance evaluation of international major airports: An application of data envelopment analysis," Journal of Air Transport Management, Elsevier, vol. 12(6), pages 342-351.
    18. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    19. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    20. Haugland, Sven A. & Myrtveit, Ingunn & Nygaard, Arne, 2007. "Market orientation and performance in the service industry: A data envelopment analysis," Journal of Business Research, Elsevier, vol. 60(11), pages 1191-1197, November.

    More about this item

    Keywords

    Productivity Analysis;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaae14:182978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.