IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

A Better Approach to Resolving Variable Selection Uncertainty in Meta Analysis for Benefits Transfer

Listed author(s):
  • Randall, Alan
  • Chen, Ding-Rong
Registered author(s):

    Because original high-quality non-market valuation studies can be expensive, perhaps prohibitively so, benefits transfer (BT) approaches are often used for valuing, e.g., the outputs of multifunctional agriculture. Here we focus on the use of BT functions, a preferred method, and address an under-appreciated problem – variable selection uncertainty – and demonstrate a conceptually superior method of resolving it. We show that the standard method of value-function BT, using the full estimated model, may generate BT values that are too sensitive to insignificant variables, whereas models reduced by backward elimination of insignificant variables pay no attention to insignificant variables that may in fact have some influence on values. Rather than searching for the best single model for BT, Bayesian model averaging (BMA) is attentive to all of the variables that are a priori relevant, but uses posterior model probabilities to give systematically lower weight to less significant variables. We estimate a full value model for wetlands in the US, and then calculate BT values from the full model, a reduced model, and by BMA. Variable selection uncertainty is exemplified by regional variables for wetland location. Predicted values from the full model are quite sensitive to region; reduced models pay no attention to regional variables; and the BMA predictions are attentive to region but give it relatively low weight. However, the suite of insignificant RHS variables, taken together, have non-trivial influence on BT values. BMA predicted values, like values from reduced models, have much narrower confidence intervals than values calculated from the full model.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by European Association of Agricultural Economists in its series 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland with number 114788.

    in new window

    Date of creation: 2011
    Handle: RePEc:ags:eaae11:114788
    Contact details of provider: Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Klaus Moeltner & Richard Woodward, 2009. "Meta-Functional Benefit Transfer for Wetland Valuation: Making the Most of Small Samples," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(1), pages 89-108, January.
    2. Carmen Fernandez & Eduardo Ley & Mark F. J. Steel, 2001. "Model uncertainty in cross-country growth regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(5), pages 563-576.
    3. Woodward, Richard T. & Wui, Yong-Suhk, 2001. "The economic value of wetland services: a meta-analysis," Ecological Economics, Elsevier, vol. 37(2), pages 257-270, May.
    4. Moeltner, Klaus & Boyle, Kevin J. & Paterson, Robert W., 2007. "Meta-analysis and benefit transfer for resource valuation-addressing classical challenges with Bayesian modeling," Journal of Environmental Economics and Management, Elsevier, vol. 53(2), pages 250-269, March.
    5. Luke Brander & Raymond Florax & Jan Vermaat, 2006. "The Empirics of Wetland Valuation: A Comprehensive Summary and a Meta-Analysis of the Literature," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(2), pages 223-250, February.
    6. Gary Koop & Simon Potter, 2004. "Forecasting in dynamic factor models using Bayesian model averaging," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 550-565, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:ags:eaae11:114788. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.