IDEAS home Printed from https://ideas.repec.org/p/ags/aesc23/334521.html
   My bibliography  Save this paper

A Bio-Economic Model of producing silage as a feedstock for Anaerobic Digestion in Ireland

Author

Listed:
  • Deasy, Maurice J.
  • Thorne, Fiona

Abstract

The economic case for the production of silage for Anaerobic Digestion (AD) can only be established by analysis of the potential costs and returns at farm level. This paper uses farm level data from Ireland in a bio-economic modelling framework to provide total costs per hectare and per tonne for production of silage for an off farm AD facility. Whilst perennial rye grass has traditionally been the sward of choice for livestock farmers in Ireland, the economics of a multi-cut nitrogen fixing crop such as red clover has been relatively unknown. The results from the simulated bio-economic model show that the total costs of production silage for AD has increased significantly in the past twenty four months. The modelled cost of Red-Clover based silage fertilised with digestate has increased from €29.35 to €43.68 per ton between 2018-2020 to 2022, an increase of 49%. The results also highlight the importance of accounting for the opportunity cost of nutrient content of digestate which increased from €370 to €907 between 2018-2020 and 2022. Furthermore, a 17% cost saving can be made while reducing overall GHG emissions by utilising digestate in a separate farm enterprise.

Suggested Citation

  • Deasy, Maurice J. & Thorne, Fiona, 2023. "A Bio-Economic Model of producing silage as a feedstock for Anaerobic Digestion in Ireland," 97th Annual Conference, March 27-29, 2023, Warwick University, Coventry, UK 334521, Agricultural Economics Society - AES.
  • Handle: RePEc:ags:aesc23:334521
    DOI: 10.22004/ag.econ.334521
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/334521/files/AES2023_AnaerobicDigestionIreland.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.334521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Murphy, J.D. & Power, N., 2009. "Technical and economic analysis of biogas production in Ireland utilising three different crop rotations," Applied Energy, Elsevier, vol. 86(1), pages 25-36, January.
    2. Montanarella, Luca & Panagos, Panos, 2021. "The relevance of sustainable soil management within the European Green Deal," Land Use Policy, Elsevier, vol. 100(C).
    3. Maurizio Carlini & Enrico Maria Mosconi & Sonia Castellucci & Mauro Villarini & Andrea Colantoni, 2017. "An Economical Evaluation of Anaerobic Digestion Plants Fed with Organic Agro-Industrial Waste," Energies, MDPI, vol. 10(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asam, Zaki-ul-Zaman & Poulsen, Tjalfe Gorm & Nizami, Abdul-Sattar & Rafique, Rashad & Kiely, Ger & Murphy, Jerry D., 2011. "How can we improve biomethane production per unit of feedstock in biogas plants?," Applied Energy, Elsevier, vol. 88(6), pages 2013-2018, June.
    2. Justyna Bauza-Kaszewska & Barbara Breza-Boruta & Grzegorz Lemańczyk & Robert Lamparski, 2022. "Effects of Eco-Friendly Product Application and Sustainable Agricultural Management Practices on Soil Properties and Phytosanitary Condition of Winter Wheat Crops," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    3. Sergio Cappucci & Serena Nappi & Andrea Cappelli, 2022. "Green Public Areas and Urban Open Spaces Management: New GreenCAL Tool Algorithms and Circular Economy Implications," Land, MDPI, vol. 11(6), pages 1-25, June.
    4. Bedoić, Robert & Jurić, Filip & Ćosić, Boris & Pukšec, Tomislav & Čuček, Lidija & Duić, Neven, 2020. "Beyond energy crops and subsidised electricity – A study on sustainable biogas production and utilisation in advanced energy markets," Energy, Elsevier, vol. 201(C).
    5. Marco Maialetti & Luca Salvati & Francesco Maria Chelli, 2024. "Sustainable Development, Territorial Disparities in Land Resources, and Soil Degradation: A Multi-Temporal Approach," Resources, MDPI, vol. 13(9), pages 1-13, September.
    6. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    7. Ilse Voskamp & Wim Timmermans & Onno Roosenschoon & Remco Kranendonk & Sabine van Rooij & Tim van Hattum & Marjolein Sterk & Bas Pedroli, 2022. "Long-Term Visioning for Landscape-Based Spatial Planning—Experiences from Two Regional Cases in The Netherlands," Land, MDPI, vol. 12(1), pages 1-15, December.
    8. Smyth, Beatrice M. & Murphy, Jerry D. & O'Brien, Catherine M., 2009. "What is the energy balance of grass biomethane in Ireland and other temperate northern European climates?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2349-2360, December.
    9. Auburger, Sebastian & Jacobs, Anna & Märländer, Bernward & Bahrs, Enno, 2016. "Economic optimization of feedstock mix for energy production with biogas technology in Germany with a special focus on sugar beets – Effects on greenhouse gas emissions and energy balances," Renewable Energy, Elsevier, vol. 89(C), pages 1-11.
    10. Yang, Jin & Chen, Bin, 2014. "Emergy analysis of a biogas-linked agricultural system in rural China – A case study in Gongcheng Yao Autonomous County," Applied Energy, Elsevier, vol. 118(C), pages 173-182.
    11. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.
    12. Sartori, Martina & Ferrari, Emanuele & Simola, Antti, 2022. "The economic effects of soil erosion in Africa: a 2050 analysis," Conference papers 333487, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Teghammar, Anna & Forgács, Gergely & Sárvári Horváth, Ilona & Taherzadeh, Mohammad J., 2014. "Techno-economic study of NMMO pretreatment and biogas production from forest residues," Applied Energy, Elsevier, vol. 116(C), pages 125-133.
    14. Usmani, Zeba & Sharma, Minaxi & Karpichev, Yevgen & Pandey, Ashok & Chander Kuhad, Ramesh & Bhat, Rajeev & Punia, Rajesh & Aghbashlo, Mortaza & Tabatabaei, Meisam & Gupta, Vijai Kumar, 2020. "Advancement in valorization technologies to improve utilization of bio-based waste in bioeconomy context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Justyna Górka & Małgorzata Cimochowicz-Rybicka & Dominika Poproch, 2022. "Sludge Management at the Kraków-Płaszów WWTP—Case Study," Sustainability, MDPI, vol. 14(13), pages 1-11, June.
    16. Marlena Piekut, 2021. "The Consumption of Renewable Energy Sources (RES) by the European Union Households between 2004 and 2019," Energies, MDPI, vol. 14(17), pages 1-31, September.
    17. Daniele Menniti & Anna Pinnarelli & Nicola Sorrentino & Fiorella Stella & Caterina Aura & Claudia Liutic & Gaetano Polizzi, 2022. "A Tool to Assess the Interaction between Energy Efficiency, Demand Response, and Power System Reliability," Energies, MDPI, vol. 15(15), pages 1-12, July.
    18. Gil-Carrera, Laura & Browne, James D. & Kilgallon, Ian & Murphy, Jerry D., 2019. "Feasibility study of an off-grid biomethane mobile solution for agri-waste," Applied Energy, Elsevier, vol. 239(C), pages 471-481.
    19. Andrea Colantoni & Danilo Monarca & Vincenzo Laurendi & Mauro Villarini & Filippo Gambella & Massimo Cecchini, 2018. "Smart Machines, Remote Sensing, Precision Farming, Processes, Mechatronic, Materials and Policies for Safety and Health Aspects," Agriculture, MDPI, vol. 8(4), pages 1-11, March.
    20. Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.

    More about this item

    Keywords

    Environmental Economics and Policy; Agribusiness;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aesc23:334521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aesukea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.