IDEAS home Printed from https://ideas.repec.org/p/ags/aaae23/364832.html
   My bibliography  Save this paper

Exploring intercropping as a sustainable system approach for smallholder farming: A literature review

Author

Listed:
  • Sechube, M.P.
  • Hintsa, A.
  • Du Plooy, C.P.

Abstract

Global food shortage is known to be caused by increasing population, adverse weather conditions, droughts, and poor food distribution. The bulk of this population reside in rural areas of Sub-Saharan African countries, with large numbers experiencing food insecurity. Industrialized farming has contributed significantly to the food supply but has a harmful effect on the environment due to the intensive use of chemical fertilizers which deteriorates soil and water quality. As a result, intercropping, the planting of two or more crop species simultaneously in the same field area is now being re-evaluated as a sustainable system approach for smallholder farmers. Smallholder farming employs more rural people and uses fewer external inputs for production which have less impact on the environment compared to mechanized agriculture, making them more suitable for sustainable farming. This paper evaluated relevant research done on intercropping systems and identified gaps for future research. Overall, the studies, through a series of experimental trials have proven that intercropping systems can increase crop yield, stability, and net income and produce low carbon footprint compared to the traditional monoculture. The system, however, has some disadvantages, such as yield reduction of the main crop due to competition, higher cost of maintenance in weeding, and damage to other crops during harvesting. There is also limited to no data investigating the economic viability and adoption of intercropping. These are major concerns that need to be investigated to obtain optimum benefits from the system and allow a steadily transition into a green economy.

Suggested Citation

  • Sechube, M.P. & Hintsa, A. & Du Plooy, C.P., 2023. "Exploring intercropping as a sustainable system approach for smallholder farming: A literature review," 2023 Seventh AAAE/60th AEASA Conference, September 18-21, 2023, Durban, South Africa 364832, African Association of Agricultural Economists (AAAE).
  • Handle: RePEc:ags:aaae23:364832
    DOI: 10.22004/ag.econ.364832
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/364832/files/271.%20Intercropping%20in%20Africa.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.364832?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:bla:devpol:v:21:y:2003:i:5-6:p:641-654 is not listed on IDEAS
    2. Xinping Chen & Zhenling Cui & Mingsheng Fan & Peter Vitousek & Ming Zhao & Wenqi Ma & Zhenlin Wang & Weijian Zhang & Xiaoyuan Yan & Jianchang Yang & Xiping Deng & Qiang Gao & Qiang Zhang & Shiwei Guo , 2014. "Producing more grain with lower environmental costs," Nature, Nature, vol. 514(7523), pages 486-489, October.
    3. Zhenling Cui & Hongyan Zhang & Xinping Chen & Chaochun Zhang & Wenqi Ma & Chengdong Huang & Weifeng Zhang & Guohua Mi & Yuxin Miao & Xiaolin Li & Qiang Gao & Jianchang Yang & Zhaohui Wang & Youliang Y, 2018. "Pursuing sustainable productivity with millions of smallholder farmers," Nature, Nature, vol. 555(7696), pages 363-366, March.
    4. Martin Weih & M. Inés Mínguez & Stefano Tavoletti, 2022. "Intercropping Systems for Sustainable Agriculture," Agriculture, MDPI, vol. 12(2), pages 1-4, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Jun Li & Minglei Wang & Wenjiao Shi & Xiaoli Shi, 2024. "Halving Environmental Impacts of Diverse Crop Production in Fujian, China through Optimized Nitrogen Management," Agriculture, MDPI, vol. 14(9), pages 1-18, September.
    3. Li, Pei & Wu, JunJie & Xu, Wenchao, 2024. "The impact of industrial sulfur dioxide emissions regulation on agricultural production in China †," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    4. Shilei Cui & Yajuan Li & Xiaoqiang Jiao & Dong Zhang, 2022. "Hierarchical Linkage between the Basic Characteristics of Smallholders and Technology Awareness Determines Small-Holders’ Willingness to Adopt Green Production Technology," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    5. Qu, Ziren & Luo, Ning & Guo, Jiameng & Xu, Jie & Wang, Pu & Meng, Qingfeng, 2024. "Enhancing sustainability in the new variety-based low emergy system for maize production by nitrogen optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Xu, Meng & Wang, Xiaoxi & Chen, Kevin, 2025. "Leveraging agricultural production organizations to reduce fertilizer use: Evidence from China," Food Policy, Elsevier, vol. 133(C).
    7. Lu, Jie & Bai, Zhaohai & Velthof, Gerard L. & Wu, Zhiguo & Chadwick, David & Ma, Lin, 2019. "Accumulation and leaching of nitrate in soils in wheat-maize production in China," Agricultural Water Management, Elsevier, vol. 212(C), pages 407-415.
    8. Zhijie Ren & Hui Zhang & Hongjie Li & Qinghui Wu & Yufang Huang & Youliang Ye & Yanan Zhao, 2025. "Improving Wheat Yield, Fertilizer Use Efficiency, and Economic Benefits Through Farmer-Participation Nutrient Management," Sustainability, MDPI, vol. 17(8), pages 1-11, April.
    9. Elsadek, Elsayed Ahmed & Zhang, Ke & Hamoud, Yousef Alhaj & Mousa, Ahmed & Awad, Ahmed & Abdallah, Mohammed & Shaghaleh, Hiba & Hamad, Amar Ali Adam & Jamil, Muhammad Tahir & Elbeltagi, Ahmed, 2024. "Impacts of climate change on rice yields in the Nile River Delta of Egypt: A large-scale projection analysis based on CMIP6," Agricultural Water Management, Elsevier, vol. 292(C).
    10. Di, Yunfei & Yang, Haibo & Hu, Yuncai & Li, Fei, 2024. "Integrating environmental footprints and ecosystem economic performance to evaluate nitrogen management in intensive drip-irrigated potato production," Agricultural Systems, Elsevier, vol. 221(C).
    11. Qiu, Weihong & Ma, Xiaolong & Cao, Hanbing & Huang, Tingmiao & She, Xu & Huang, Ming & Wang, Zhaohui & Liu, Jinshan, 2022. "Improving wheat yield by optimizing seeding and fertilizer rates based on precipitation in the summer fallow season in drylands of the Loess Plateau," Agricultural Water Management, Elsevier, vol. 264(C).
    12. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    13. Xu, Zhuo & He, Ping & Yin, Xinyou & Huang, Qiuhong & Ding, Wencheng & Xu, Xinpeng & Struik, Paul C., 2023. "Can the advisory system Nutrient Expert® balance productivity, profitability and sustainability for rice production systems in China?," Agricultural Systems, Elsevier, vol. 205(C).
    14. Li, Jianzheng & Wang, Ligang & Luo, Zhongkui & Wang, Enli & Wang, Guocheng & Zhou, Han & Li, Hu & Xu, Shiwei, 2021. "Reducing N2O emissions while maintaining yield in a wheat–maize rotation system modelled by APSIM," Agricultural Systems, Elsevier, vol. 194(C).
    15. Penghui Wang & Rui Ding & Wenjiao Shi & Jun Li, 2024. "Potential Reductions in the Environmental Impacts of Agricultural Production in Hubei Province, China," Agriculture, MDPI, vol. 14(3), pages 1-17, March.
    16. Liang Chi & Shuqing Han & Meili Huan & Yajuan Li & Jifang Liu, 2022. "Land Fragmentation, Technology Adoption and Chemical Fertilizer Application: Evidence from China," IJERPH, MDPI, vol. 19(13), pages 1-17, July.
    17. Wang, Hongzhang & Ren, Hao & Zhang, Lihua & Zhao, Yali & Liu, Yuee & He, Qijin & Li, Geng & Han, Kun & Zhang, Jiwang & Zhao, Bin & Ren, Baizhao & Liu, Peng, 2023. "A sustainable approach to narrowing the summer maize yield gap experienced by smallholders in the North China Plain," Agricultural Systems, Elsevier, vol. 204(C).
    18. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    19. Liu, Lin & Yao, Shan & Zhang, Hongtao & Muhammed, Ayaz & Xu, Jiaxing & Li, Ruonan & Zhang, Dongjie & Zhang, Shulan & Yang, Xueyun, 2019. "Soil nitrate nitrogen buffer capacity and environmentally safe nitrogen rate for winter wheat-summer maize cropping in Northern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 445-453.
    20. Yingjun She & Ping Li & Xuebin Qi & Wei Guo & Shafeeq Ur Rahman & Hongfei Lu & Cancan Ma & Zhenjie Du & Jiaxin Cui & Zhijie Liang, 2022. "Effects of Shallow Groundwater Depth and Nitrogen Application Level on Soil Water and Nitrate Content, Growth and Yield of Winter Wheat," Agriculture, MDPI, vol. 12(2), pages 1-19, February.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaae23:364832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaaeaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.