IDEAS home Printed from https://ideas.repec.org/p/aah/create/2018-27.html
   My bibliography  Save this paper

Threshold regression with endogeneity for short panels

Author

Listed:
  • Tue Gørgens

    (The Australian National University)

  • Allan H. Würtz

    (Aarhus University and CREATES)

Abstract

This note considers the estimation of dynamic threshold regression models with fixed effects using short panel data. We examine a two-step method, where the threshold parameter is estimated nonparametrically at the N-rate and the remaining parameters are estimated by GMM at the root N-rate. We provide simulation results that illustrate the potential advantages of the new method in comparison with pure GMM estimation. The simulations also highlight the importance the choice of instruments in GMM estimation.

Suggested Citation

  • Tue Gørgens & Allan H. Würtz, 2018. "Threshold regression with endogeneity for short panels," CREATES Research Papers 2018-27, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2018-27
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/18/rp18_27.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    2. Seo, Myung Hwan & Shin, Yongcheol, 2016. "Dynamic panels with threshold effect and endogeneity," Journal of Econometrics, Elsevier, vol. 195(2), pages 169-186.
    3. Han, Chirok & Kim, Hyoungjong, 2014. "The role of constant instruments in dynamic panel estimation," Economics Letters, Elsevier, vol. 124(3), pages 500-503.
    4. González, Andrés & Teräsvirta, Timo & van Dijk, Dick & Yang, Yukai, 2005. "Panel Smooth Transition Regression Models," SSE/EFI Working Paper Series in Economics and Finance 604, Stockholm School of Economics, revised 11 Oct 2017.
    5. Arellano, Manuel, 2016. "Modelling optimal instrumental variables for dynamic panel data models," Research in Economics, Elsevier, vol. 70(2), pages 238-261.
    6. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    7. Yu, Ping & Phillips, Peter C.B., 2018. "Threshold regression with endogeneity," Journal of Econometrics, Elsevier, vol. 203(1), pages 50-68.
    8. Andrews, Donald W. K. & Lu, Biao, 2001. "Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models," Journal of Econometrics, Elsevier, vol. 101(1), pages 123-164, March.
    9. Crepon, Bruno & Kramarz, Francis & Trognon, Alain, 1997. "Parameters of interest, nuisance parameters and orthogonality conditions An application to autoregressive error component models," Journal of Econometrics, Elsevier, vol. 82(1), pages 135-156.
    10. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    11. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    12. Yu, Ping, 2015. "Adaptive estimation of the threshold point in threshold regression," Journal of Econometrics, Elsevier, vol. 189(1), pages 83-100.
    13. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    14. Porter, Jack & Yu, Ping, 2015. "Regression discontinuity designs with unknown discontinuity points: Testing and estimation," Journal of Econometrics, Elsevier, vol. 189(1), pages 132-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haldar, Anasuya & Sethi, Narayan, 2022. "Effect of sectoral foreign aid allocation on growth and structural transformation in sub-Saharan Africa—Analysing the roles of institutional quality and human capital," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 1010-1026.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahn, Seung C. & Lee, Young H. & Schmidt, Peter, 2013. "Panel data models with multiple time-varying individual effects," Journal of Econometrics, Elsevier, vol. 174(1), pages 1-14.
    2. Seo, Myung Hwan & Shin, Yongcheol, 2016. "Dynamic panels with threshold effect and endogeneity," Journal of Econometrics, Elsevier, vol. 195(2), pages 169-186.
    3. Ashima Goyal & Akhilesh K. Verma & Rajeswari Sengupta, 2022. "External shocks, cross-border flows and macroeconomic risks in emerging market economies," Empirical Economics, Springer, vol. 62(5), pages 2111-2148, May.
    4. Yoshitsugu Kitazawa, 2003. "Dynamic Panel Data Model and Moment Generating Function," Discussion Papers 13, Kyushu Sangyo University, Faculty of Economics.
    5. Okui, Ryo, 2009. "The optimal choice of moments in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 151(1), pages 1-16, July.
    6. Miao, Ke & Su, Liangjun & Wang, Wendun, 2020. "Panel threshold regressions with latent group structures," Journal of Econometrics, Elsevier, vol. 214(2), pages 451-481.
    7. Hayakawa, K. & Pesaran, M.H., 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Models," Cambridge Working Papers in Economics 1224, Faculty of Economics, University of Cambridge.
    8. Tue Gørgens & Chirok Han & Sen Xue, 2019. "Moment Restrictions and Identification in Linear Dynamic Panel Data Models," Annals of Economics and Statistics, GENES, issue 134, pages 149-176.
    9. Al-Jahwari, Salim Ahmed Said, 2021. "Does the Twin-Deficits doctrine apply to the Gulf Cooperation Council? A dynamic panel VAR-X model approach," MPRA Paper 111232, University Library of Munich, Germany.
    10. Angelica Gonzalez, 2007. "Angelica Gonzalez," Edinburgh School of Economics Discussion Paper Series 168, Edinburgh School of Economics, University of Edinburgh.
    11. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    12. Kazuhiko Hayakawa & M. Hashem Pesaran, 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models," Working Paper series 38_12, Rimini Centre for Economic Analysis.
    13. Awoa, Paul Awoa & Efogo, Françoise Okah & Ondoa, Henri Atangana, 2023. "Oil dependence and entrepreneurship: Non-linear evidence," Economic Systems, Elsevier, vol. 47(1).
    14. Jan F. Kiviet, 2005. "Judging Contending Estimators by Simulation: Tournaments in Dynamic Panel Data Models," Tinbergen Institute Discussion Papers 05-112/4, Tinbergen Institute.
    15. Doran, Howard E. & Schmidt, Peter, 2006. "GMM estimators with improved finite sample properties using principal components of the weighting matrix, with an application to the dynamic panel data model," Journal of Econometrics, Elsevier, vol. 133(1), pages 387-409, July.
    16. Chirok Han & Hyoungjong Kim, 2023. "Dynamic panel GMM estimators with improved finite sample properties using parametric restrictions for dimension reduction," Empirical Economics, Springer, vol. 64(6), pages 2589-2610, June.
    17. Angelica Gonzalez, 2007. "Empirical Likelihood: Improved Inference within Dynamic Panel Data Models," Edinburgh School of Economics Discussion Paper Series 154, Edinburgh School of Economics, University of Edinburgh.
    18. Hayakawa, Kazuhiko & Nagata, Shuichi, 2016. "On the behaviour of the GMM estimator in persistent dynamic panel data models with unrestricted initial conditions," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 265-303.
    19. Ping Yu & Shengjie Hong & Peter C. B. Phillips, 2022. "Panel Threshold Regression with Unobserved Individual-Specific Threshold Effects," Cowles Foundation Discussion Papers 2352, Cowles Foundation for Research in Economics, Yale University.
    20. Ramirez-Rondán Nelson, 2007. "Nonlinear Volatility Effects on Growth in Developing Economies," Working Papers 2007-016, Banco Central de Reserva del Perú.

    More about this item

    Keywords

    Threshold regression; dynamic models; endogeneity; panel data; GMM estimation; integrated difference kernel IDK estimator; superconsistency;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2018-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.