IDEAS home Printed from https://ideas.repec.org/p/aah/create/2014-15.html
   My bibliography  Save this paper

On an Estimation Method for an Alternative Fractionally Cointegrated Model

Author

Listed:
  • Federico Carlini

    () (Aarhus University and CREATES)

  • Katarzyna Lasak

    () (VU Amsterdam & Tinbergen Institute)

Abstract

In this paper we consider the Fractional Vector Error Correction model proposed in Avarucci (2007), which is characterized by a richer lag structure than models proposed in Granger (1986) and Johansen (2008, 2009). We discuss the identification issues of the model of Avarucci (2007), following the ideas in Carlini and Santucci de Magistris (2014) for the model of Johansen (2008, 2009). We propose a 4-step estimation procedure that is based on the switching algorithm employed in Carlini and Mosconi (2014) and the GLS procedure in Mosconi and Paruolo (2014). The proposed procedure provides estimates of the long run parameters of the fractional cointegrated system that are consistent and unbiased, which we demonstrate by a Monte Carlo experiment.

Suggested Citation

  • Federico Carlini & Katarzyna Lasak, 2014. "On an Estimation Method for an Alternative Fractionally Cointegrated Model," CREATES Research Papers 2014-15, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2014-15
    as

    Download full text from publisher

    File URL: ftp://ftp.econ.au.dk/creates/rp/14/rp14_15.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    2. Søren Johansen, 2009. "Representation of Cointegrated Autoregressive Processes with Application to Fractional Processes," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 121-145.
    3. Katarzyna Lasak, 2008. "Maximum likelihood estimation of fractionally cointegrated systems," CREATES Research Papers 2008-53, Department of Economics and Business Economics, Aarhus University.
    4. Lasak, Katarzyna, 2010. "Likelihood based testing for no fractional cointegration," Journal of Econometrics, Elsevier, vol. 158(1), pages 67-77, September.
    5. Avarucci, Marco & Velasco, Carlos, 2009. "A Wald test for the cointegration rank in nonstationary fractional systems," Journal of Econometrics, Elsevier, pages 178-189.
    6. Johansen, SØren, 2008. "A Representation Theory For A Class Of Vector Autoregressive Models For Fractional Processes," Econometric Theory, Cambridge University Press, vol. 24(03), pages 651-676, June.
    7. Paolo Santucci de Magistris & Federico Carlini, 2014. "On the identification of fractionally cointegrated VAR models with the F(d) condition," CREATES Research Papers 2014-43, Department of Economics and Business Economics, Aarhus University.
    8. Granger, Clive W J, 1986. "Developments in the Study of Cointegrated Economic Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 48(3), pages 213-228, August.
    9. Federico Carlini & Paolo Santucci de Magistris, 2013. "On the identification of fractionally cointegrated VAR models with the F(d) condition," CREATES Research Papers 2013-44, Department of Economics and Business Economics, Aarhus University.
    10. Mosconi, Rocco & Paruolo, Paolo, 2014. "Rank and order conditions for identification in simultaneous system of cointegrating equations with integrated variables of order two," MPRA Paper 53589, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Error correction model; Gaussian VAR model; Fractional Cointegration; Estimation algorithm; Maximum likelihood estimation; Switching Algorithm; Reduced Rank Regression;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2014-15. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.econ.au.dk/afn/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.