IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4419-0820-9_31.html
   My bibliography  Save this book chapter

Network Evaluation Based on Connectivity Vulnerability

In: Transportation and Traffic Theory 2009: Golden Jubilee

Author

Listed:
  • Fumitaka Kurauchi

    (Gifu University)

  • Nobuhiro Uno

    (Kyoto University)

  • Agachai Sumalee

    (The Hong Kong Polytechnic University)

  • Yumiko Seto

    (Kyoto University)

Abstract

Network reliability indices are generally expressed as a multiplier of the probability that the specific event may occur and the consequence of the event. It means that an inaccurate estimation of the probability of event occurrence may lead to different evaluation of the reliability. In contrast, the concept of “network vulnerability” has been proposed for evaluating the network component only by the consequence of the degradation. Though the concept of vulnerability may have avoided the uncertainty of the capacity degradation, it still requires an exact measurement of the traffic demand in the network which may not be accurate especially in the case of the disaster. We thus propose the method of critical link identification from the topological point of view, i.e., connectivity vulnerability. The concept of the k-edge-connectivity is applied in this study. The number of distinct paths with acceptable travel time between each origin-destination (OD) pair is used to measure the connectivity of that OD pair (similar to the concept of k-edge connectivity). A mathematical program for identifying acceptable distinct paths between each OD pair is formulated. The proposed method and indicator of connectivity vulnerability is then tested with the Kansai road network.

Suggested Citation

  • Fumitaka Kurauchi & Nobuhiro Uno & Agachai Sumalee & Yumiko Seto, 2009. "Network Evaluation Based on Connectivity Vulnerability," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 637-649, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4419-0820-9_31
    DOI: 10.1007/978-1-4419-0820-9_31
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Xiangdong & Chen, Anthony & Jansuwan, Sarawut & Yang, Chao & Ryu, Seungkyu, 2018. "Transportation network redundancy: Complementary measures and computational methods," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 68-85.
    2. Qian Ye & Hyun Kim, 2019. "Assessing network vulnerability of heavy rail systems with the impact of partial node failures," Transportation, Springer, vol. 46(5), pages 1591-1614, October.
    3. Demirel, Hande & Kompil, Mert & Nemry, Françoise, 2015. "A framework to analyze the vulnerability of European road networks due to Sea-Level Rise (SLR) and sea storm surges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 62-76.
    4. Jansuwan, Sarawut & Chen, Anthony & Xu, Xiangdong, 2021. "Analysis of freight transportation network redundancy: An application to Utah’s bi-modal network for transporting coal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 154-171.
    5. Taylor, Michael A.P. & Susilawati,, 2012. "Remoteness and accessibility in the vulnerability analysis of regional road networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 761-771.
    6. Sugiura, Satoshi & Chen, Anthony, 2021. "Vulnerability analysis of cut-capacity structure and OD demand using Gomory-Hu tree method," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 111-127.
    7. Muriel-Villegas, Juan E. & Alvarez-Uribe, Karla C. & Patiño-Rodríguez, Carmen E. & Villegas, Juan G., 2016. "Analysis of transportation networks subject to natural hazards – Insights from a Colombian case," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 151-165.
    8. Xu, Xiangdong & Chen, Anthony & Xu, Guangming & Yang, Chao & Lam, William H.K., 2021. "Enhancing network resilience by adding redundancy to road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    9. Khademi, Navid & Babaei, Mohsen & Schmöcker, Jan-Dirk & Fani, Amirhossein, 2018. "Analysis of incident costs in a vulnerable sparse rail network – Description and Iran case study," Research in Transportation Economics, Elsevier, vol. 70(C), pages 9-27.
    10. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    11. Baroud, Hiba & Barker, Kash & Ramirez-Marquez, Jose E. & Rocco S., Claudio M., 2014. "Importance measures for inland waterway network resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 55-67.
    12. Chen, Bi Yu & Lam, William H.K. & Sumalee, Agachai & Li, Qingquan & Li, Zhi-Chun, 2012. "Vulnerability analysis for large-scale and congested road networks with demand uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 501-516.
    13. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    14. Balijepalli, Chandra & Oppong, Olivia, 2014. "Measuring vulnerability of road network considering the extent of serviceability of critical road links in urban areas," Journal of Transport Geography, Elsevier, vol. 39(C), pages 145-155.
    15. Bíl, Michal & Vodák, Rostislav & Kubeček, Jan & Bílová, Martina & Sedoník, Jiří, 2015. "Evaluating road network damage caused by natural disasters in the Czech Republic between 1997 and 2010," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 90-103.
    16. Bell, Michael G.H. & Kurauchi, Fumitaka & Perera, Supun & Wong, Walter, 2017. "Investigating transport network vulnerability by capacity weighted spectral analysis," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 251-266.
    17. Gu, Yu & Chen, Anthony & Xu, Xiangdong, 2023. "Measurement and ranking of important link combinations in the analysis of transportation network vulnerability envelope buffers under multiple-link disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 118-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4419-0820-9_31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.