IDEAS home Printed from https://ideas.repec.org/f/pfa653.html
   My authors  Follow this author

Mohammed A. Fayad

Personal Details

First Name:Mohammed
Middle Name:A.
Last Name:Fayad
Suffix:
RePEc Short-ID:pfa653

Affiliation

University of Technology-Iraq (University of Technology-Iraq)

https://www.uotechnology.edu.iq/
Baghdad

Research output

as
Jump to: Articles

Articles

  1. Fayad, Mohammed A. & Tsolakis, Athanasios & Martos, Francisco J., 2020. "Influence of alternative fuels on combustion and characteristics of particulate matter morphology in a compression ignition diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 962-969.
  2. Fayad, M.A. & Tsolakis, A. & Fernández-Rodríguez, D. & Herreros, J.M. & Martos, F.J. & Lapuerta, M., 2017. "Manipulating modern diesel engine particulate emission characteristics through butanol fuel blending and fuel injection strategies for efficient diesel oxidation catalysts," Applied Energy, Elsevier, vol. 190(C), pages 490-500.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Fayad, Mohammed A. & Tsolakis, Athanasios & Martos, Francisco J., 2020. "Influence of alternative fuels on combustion and characteristics of particulate matter morphology in a compression ignition diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 962-969.

    Cited by:

    1. Muhssen, Hassan Sadah & Masuri, Siti Ujila & Sahari, Barkawi Bin & Hairuddin, Abdul Aziz, 2021. "Design improvement of compressed natural gas (CNG)-Air mixer for diesel dual-fuel engines using computational fluid dynamics," Energy, Elsevier, vol. 216(C).
    2. Cesar de Lima Nogueira, Silvio & Och, Stephan Hennings & Moura, Luis Mauro & Domingues, Eric & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2023. "Prediction of the NOx and CO2 emissions from an experimental dual fuel engine using optimized random forest combined with feature engineering," Energy, Elsevier, vol. 280(C).
    3. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Zandie, Mohammad & Ng, Hoon Kiat & Gan, Suyin & Muhamad Said, Mohd Farid & Cheng, Xinwei, 2023. "Multi-input multi-output machine learning predictive model for engine performance and stability, emissions, combustion and ignition characteristics of diesel-biodiesel-gasoline blends," Energy, Elsevier, vol. 262(PA).
    5. Felipe Andrade Torres & Omid Doustdar & Jose Martin Herreros & Runzhao Li & Robert Poku & Athanasios Tsolakis & Jorge Martins & Silvio A. B. Vieira de Melo, 2021. "A Comparative Study of Biofuels and Fischer–Tropsch Diesel Blends on the Engine Combustion Performance for Reducing Exhaust Gaseous and Particulate Emissions," Energies, MDPI, vol. 14(6), pages 1-19, March.
    6. Rosli, Mohd A.F. & Aziz, A. Rashid A. & Ismael, Mhadi A. & Elbashir, Nimir O. & Zainal A., Ezrann Z. & Baharom, Masri & Mohammed, Salah E., 2021. "Experimental study of micro-explosion and puffing of gas-to-liquid (GTL) fuel blends by suspended droplet method," Energy, Elsevier, vol. 218(C).
    7. Zdzisław Chłopek & Hubert Sar & Krystian Szczepański & Dagna Zakrzewska, 2023. "Operational Issues of Using Replacement Fuels to Power Internal Combustion Engines," Energies, MDPI, vol. 16(6), pages 1-17, March.

  2. Fayad, M.A. & Tsolakis, A. & Fernández-Rodríguez, D. & Herreros, J.M. & Martos, F.J. & Lapuerta, M., 2017. "Manipulating modern diesel engine particulate emission characteristics through butanol fuel blending and fuel injection strategies for efficient diesel oxidation catalysts," Applied Energy, Elsevier, vol. 190(C), pages 490-500.

    Cited by:

    1. Lapuerta, Magín & Ramos, Ángel & Barba, Javier & Fernández-Rodríguez, David, 2018. "Cold- and warm-temperature emissions assessment of n-butanol blends in a Euro 6 vehicle," Applied Energy, Elsevier, vol. 218(C), pages 173-183.
    2. David Fernández-Rodríguez & Magín Lapuerta & Lizzie German, 2021. "Progress in the Use of Biobutanol Blends in Diesel Engines," Energies, MDPI, vol. 14(11), pages 1-22, May.
    3. Mao, Dongxu & Ghadikolaei, Meisam Ahmadi & Cheung, Chun Shun & Shen, Zhaojie & Cui, Wenzheng & Wong, Pak Kin, 2020. "Influence of alternative fuels on the particulate matter micro and nano-structures, volatility and oxidation reactivity in a compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Jena, Ashutosh & Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2022. "Optical and computational investigations of the effect of Spray-Swirl interactions on autoignition and soot formation in a compression ignition engine fuelled by Diesel, dieseline and diesohol," Applied Energy, Elsevier, vol. 324(C).
    5. María D. Redel-Macías & David E. Leiva-Candia & José A. Soriano & José M. Herreros & Antonio J. Cubero-Atienza & Sara Pinzi, 2021. "Influence of Short Carbon-Chain Alcohol (Ethanol and 1-Propanol)/Diesel Fuel Blends over Diesel Engine Emissions," Energies, MDPI, vol. 14(5), pages 1-17, February.
    6. Hergueta, C. & Tsolakis, A. & Herreros, J.M. & Bogarra, M. & Price, E. & Simmance, K. & York, A.P.E. & Thompsett, D., 2018. "Impact of bio-alcohol fuels combustion on particulate matter morphology from efficient gasoline direct injection engines," Applied Energy, Elsevier, vol. 230(C), pages 794-802.
    7. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Zhao, Xiaohuan & Zuo, Hongyan & Jia, Guohai, 2022. "Effect analysis on pressure sensitivity performance of diesel particulate filter for heavy-duty truck diesel engine by the nonlinear soot regeneration combustion pressure model," Energy, Elsevier, vol. 257(C).
    9. Srinidhi, Campli & Madhusudhan, A. & Channapattana, S.V. & Gawali, S.V. & Aithal, Kiran, 2021. "RSM based parameter optimization of CI engine fuelled with nickel oxide dosed Azadirachta indica methyl ester," Energy, Elsevier, vol. 234(C).
    10. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    11. Ganesh, Duraisamy & Ayyappan, P.R. & Murugan, Rangasamy, 2019. "Experimental investigation of iso-butanol/diesel reactivity controlled compression ignition combustion in a non-road diesel engine," Applied Energy, Elsevier, vol. 242(C), pages 1307-1319.
    12. Saxena, Vishal & Kumar, Niraj & Saxena, Vinod Kumar, 2019. "Multi-objective optimization of modified nanofluid fuel blends at different TiO2 nanoparticle concentration in diesel engine: Experimental assessment and modeling," Applied Energy, Elsevier, vol. 248(C), pages 330-353.
    13. Yadav, Jaykumar & Ramesh, A., 2018. "Injection strategies for reducing smoke and improving the performance of a butanol-diesel common rail dual fuel engine," Applied Energy, Elsevier, vol. 212(C), pages 1-12.
    14. Fayad, Mohammed A. & Tsolakis, Athanasios & Martos, Francisco J., 2020. "Influence of alternative fuels on combustion and characteristics of particulate matter morphology in a compression ignition diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 962-969.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Mohammed A. Fayad should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.