IDEAS home Printed from https://ideas.repec.org/f/pbl242.html
   My authors  Follow this author

Keven Bluteau

Personal Details

First Name:Keven
Middle Name:
Last Name:Bluteau
Suffix:
RePEc Short-ID:pbl242
[This author has chosen not to make the email address public]
http://kevenbluteau.com

Affiliation

(50%) HEC Montréal (École des Hautes Études Commerciales)

Montréal, Canada
http://www.hec.ca/
RePEc:edi:hecmtca (more details at EDIRC)

(50%) Faculteit Economie en Bedrijfskunde
Universiteit Gent

Gent, Belgium
https://www.ugent.be/eb/
RePEc:edi:ferugbe (more details at EDIRC)

Research output

as
Jump to: Articles

Articles

  1. Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.
  2. Ardia, David & Bluteau, Keven & Boudt, Kris, 2019. "Questioning the news about economic growth: Sparse forecasting using thousands of news-based sentiment values," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1370-1386.
  3. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.

    Cited by:

    1. Fantazzini, Dean, 2022. "Crypto Coins and Credit Risk: Modelling and Forecasting their Probability of Death," MPRA Paper 113744, University Library of Munich, Germany.
    2. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022. "On the volatility of cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 62(C).
    3. OlaOluwa S. Yaya & Ahamuefula E. Ogbonna & Robert Mudida & Nuruddeen Abu, 2021. "Market efficiency and volatility persistence of cryptocurrency during pre‐ and post‐crash periods of Bitcoin: Evidence based on fractional integration," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1318-1335, January.
    4. Jingxuan Liu & Ping Qiao & Jian Ding & Luke Hankinson & Elodie H. Harriman & Edward M. Schiller & Ieva Ramanauskaite & Haowei Zhang, 2020. "Will the Aviation Industry Have a Bright Future after the COVID-19 Outbreak? Evidence from Chinese Airport Shipping Sector," JRFM, MDPI, vol. 13(11), pages 1-14, November.
    5. Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of Bitcoin: The Role of the Trade War," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 29-53, January.
    6. Mawuli Segnon & Stelios Bekiros, 2020. "Forecasting volatility in bitcoin market," Annals of Finance, Springer, vol. 16(3), pages 435-462, September.
    7. Pınar Kaya Soylu & Mustafa Okur & Özgür Çatıkkaş & Z. Ayca Altintig, 2020. "Long Memory in the Volatility of Selected Cryptocurrencies: Bitcoin, Ethereum and Ripple," JRFM, MDPI, vol. 13(6), pages 1-21, May.
    8. Ángeles Cebrián-Hernández & Enrique Jiménez-Rodríguez, 2021. "Modeling of the Bitcoin Volatility through Key Financial Environment Variables: An Application of Conditional Correlation MGARCH Models," Mathematics, MDPI, vol. 9(3), pages 1-16, January.
    9. Kuo-Shing Chen & Yu-Chuan Huang, 2021. "Detecting Jump Risk and Jump-Diffusion Model for Bitcoin Options Pricing and Hedging," Mathematics, MDPI, vol. 9(20), pages 1-24, October.
    10. Chappell, Daniel, 2018. "Regime heteroskedasticity in Bitcoin: A comparison of Markov switching models," MPRA Paper 90682, University Library of Munich, Germany.
    11. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    12. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Do Cryptocurrency Prices Camouflage Latent Economic Effects? A Bayesian Hidden Markov Approach," Future Internet, MDPI, vol. 12(3), pages 1-19, March.
    13. Lai T. Hoang & Dirk G. Baur, 2020. "Forecasting bitcoin volatility: Evidence from the options market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(10), pages 1584-1602, October.
    14. Fung, Kennard & Jeong, Jiin & Pereira, Javier, 2022. "More to cryptos than bitcoin: A GARCH modelling of heterogeneous cryptocurrencies," Finance Research Letters, Elsevier, vol. 47(PA).
    15. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    16. Borri, Nicola, 2019. "Conditional tail-risk in cryptocurrency markets," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 1-19.
    17. Urom, Christian & Onwuka, Kevin O. & Uma, Kalu E. & Yuni, Denis N., 2020. "Regime dependent effects and cyclical volatility spillover between crude oil price movements and stock returns," International Economics, Elsevier, vol. 161(C), pages 10-29.
    18. Jiang, Kunliang & Zeng, Linhui & Song, Jiashan & Liu, Yimeng, 2022. "Forecasting Value-at-Risk of cryptocurrencies using the time-varying mixture-accelerating generalized autoregressive score model," Research in International Business and Finance, Elsevier, vol. 61(C).
    19. Yaojie Zhang & Mengxi He & Danyan Wen & Yudong Wang, 2022. "Forecasting Bitcoin volatility: A new insight from the threshold regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 633-652, April.
    20. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    21. Ding, Shusheng & Cui, Tianxiang & Wu, Xiangling & Du, Min, 2022. "Supply chain management based on volatility clustering: The effect of CBDC volatility," Research in International Business and Finance, Elsevier, vol. 62(C).
    22. Ramzi Nekhili & Jahangir Sultan, 2020. "Jump Driven Risk Model Performance in Cryptocurrency Market," IJFS, MDPI, vol. 8(2), pages 1-18, April.
    23. Yin, Libo & Nie, Jing & Han, Liyan, 2021. "Understanding cryptocurrency volatility: The role of oil market shocks," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 233-253.
    24. Abdulkadir Kaya & İkram Yusuf Yarbaşı, 2021. "Forecasting of Volatility in Stock Exchange Markets by MS-GARCH Approach: An Application of Borsa Istanbul," Journal of Research in Economics, Politics & Finance, Ersan ERSOY, vol. 6(1), pages 16-35.
    25. Park, Beum-Jo, 2022. "The COVID-19 pandemic, volatility, and trading behavior in the bitcoin futures market," Research in International Business and Finance, Elsevier, vol. 59(C).
    26. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    27. Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
    28. Ilhami KARAHANOGLU, 2020. "The VaR comparison of the fresh investment toolBITCOIN with other conventional investment tools, gold, stock exchange (BIST100) and foreign currencies (EUR/USD VS TRL)," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 11, pages 160-181, December.
    29. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    30. Dimitrios Koutmos & James E. Payne, 2021. "Intertemporal asset pricing with bitcoin," Review of Quantitative Finance and Accounting, Springer, vol. 56(2), pages 619-645, February.
    31. Koki, Constandina & Leonardos, Stefanos & Piliouras, Georgios, 2022. "Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models," Research in International Business and Finance, Elsevier, vol. 59(C).
    32. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    33. Dirk G. Baur & Thomas Dimpfl, 2021. "The volatility of Bitcoin and its role as a medium of exchange and a store of value," Empirical Economics, Springer, vol. 61(5), pages 2663-2683, November.
    34. Vahidin Jeleskovic & Mirko Meloni & Zahid Irshad Younas, 2020. "Cryptocurrencies: A Copula Based Approach for Asymmetric Risk Marginal Allocations," MAGKS Papers on Economics 202034, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    35. Klaudia Jarno & Hanna Kołodziejczyk, 2021. "Does the Design of Stablecoins Impact Their Volatility?," JRFM, MDPI, vol. 14(2), pages 1-14, January.
    36. Katsiampa, Paraskevi & Corbet, Shaen & Lucey, Brian, 2019. "Volatility spillover effects in leading cryptocurrencies: A BEKK-MGARCH analysis," Finance Research Letters, Elsevier, vol. 29(C), pages 68-74.
    37. Natalya Apopo & Andrew Phiri, 2019. "On the (in)efficiency of cryptocurrencies: Have they taken daily or weekly random walks?," Working Papers 1904, Department of Economics, Nelson Mandela University, revised Jun 2019.
    38. Kejia Yan & Huqin Yan & Rakesh Gupta, 2022. "Are GARCH and DCC Values of 10 Cryptocurrencies Affected by COVID-19?," JRFM, MDPI, vol. 15(3), pages 1-25, March.
    39. Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
    40. Amélie Charles & Olivier Darné, 2019. "Volatility estimation for cryptocurrencies: Further evidence with jumps and structural breaks," Economics Bulletin, AccessEcon, vol. 39(2), pages 954-968.
    41. Qian, Lihua & Wang, Jiqian & Ma, Feng & Li, Ziyang, 2022. "Bitcoin volatility predictability–The role of jumps and regimes," Finance Research Letters, Elsevier, vol. 47(PB).
    42. Cretarola, Alessandra & Figà-Talamanca, Gianna, 2020. "Bubble regime identification in an attention-based model for Bitcoin and Ethereum price dynamics," Economics Letters, Elsevier, vol. 191(C).
    43. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    44. Wu, Chuanzhen, 2021. "Window effect with Markov-switching GARCH model in cryptocurrency market," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    45. Uzonwanne, Godfrey, 2021. "Volatility and return spillovers between stock markets and cryptocurrencies," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 30-36.
    46. Tan, Shay-Kee & Chan, Jennifer So-Kuen & Ng, Kok-Haur, 2020. "On the speculative nature of cryptocurrencies: A study on Garman and Klass volatility measure," Finance Research Letters, Elsevier, vol. 32(C).
    47. José Antonio Núñez-Mora & Roberto Joaquín Santillán-Salgado & Mario Iván Contreras-Valdez, 2022. "COVID Asymmetric Impact on the Risk Premium of Developed and Emerging Countries’ Stock Markets," Mathematics, MDPI, vol. 10(9), pages 1-36, April.
    48. Grobys, Klaus & Junttila, Juha & Kolari, James W. & Sapkota, Niranjan, 2021. "On the stability of stablecoins," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 207-223.
    49. Qiu, Yue & Wang, Zongrun & Xie, Tian & Zhang, Xinyu, 2021. "Forecasting Bitcoin realized volatility by exploiting measurement error under model uncertainty," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 179-201.
    50. Shi, Yanlin & Ho, Kin-Yip, 2021. "News sentiment and states of stock return volatility: Evidence from long memory and discrete choice models," Finance Research Letters, Elsevier, vol. 38(C).
    51. Saketh Aleti & Bruce Mizrach, 2021. "Bitcoin spot and futures market microstructure," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 194-225, February.
    52. Stephanie Danielle Subramoney & Knowledge Chinhamu & Retius Chifurira, 2021. "Value at Risk estimation using GAS models with heavy tailed distributions for cryptocurrencies," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 10(4), pages 40-54, October.
    53. Figà-Talamanca, Gianna & Focardi, Sergio & Patacca, Marco, 2021. "Regime switches and commonalities of the cryptocurrencies asset class," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    54. Angerer, Martin & Hoffmann, Christian Hugo & Neitzert, Florian & Kraus, Sascha, 2021. "Objective and subjective risks of investing into cryptocurrencies," Finance Research Letters, Elsevier, vol. 40(C).
    55. Tan, Chia-Yen & Koh, You-Beng & Ng, Kok-Haur & Ng, Kooi-Huat, 2021. "Dynamic volatility modelling of Bitcoin using time-varying transition probability Markov-switching GARCH model," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    56. Gradojevic, Nikola & Tsiakas, Ilias, 2021. "Volatility cascades in cryptocurrency trading," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 252-265.
    57. Pinar Deniz & Thanasis Stengos, 2020. "Cryptocurrency Returns before and after the Introduction of Bitcoin Futures," JRFM, MDPI, vol. 13(6), pages 1-21, June.
    58. Riccardo De Blasis & Alexander Webb, 2022. "Arbitrage, contract design, and market structure in Bitcoin futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 492-524, March.
    59. Aurelio F. Bariviera & Ignasi Merediz-Sol`a, 2020. "Where do we stand in cryptocurrencies economic research? A survey based on hybrid analysis," Papers 2003.09723, arXiv.org.
    60. Müller, Fernanda Maria & Santos, Samuel Solgon & Gössling, Thalles Weber & Righi, Marcelo Brutti, 2022. "Comparison of risk forecasts for cryptocurrencies: A focus on Range Value at Risk," Finance Research Letters, Elsevier, vol. 48(C).
    61. Naeem, Muhammad & Tiwari, Aviral Kumar & Mubashra, Sana & Shahbaz, Muhammad, 2019. "Modeling volatility of precious metals markets by using regime-switching GARCH models," Resources Policy, Elsevier, vol. 64(C).
    62. Jens Klose, 2021. "Cryptocurrencies and Gold - Similarities and Differences," MAGKS Papers on Economics 202128, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    63. Darko Vukovic & Moinak Maiti & Zoran Grubisic & Elena M. Grigorieva & Michael Frömmel, 2021. "COVID-19 Pandemic: Is the Crypto Market a Safe Haven? The Impact of the First Wave," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    64. Ma, Yechi & Ahmad, Ferhana & Liu, Miao & Wang, Zilong, 2020. "Portfolio optimization in the era of digital financialization using cryptocurrencies," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    65. Grobys, Klaus & Junttila, Juha, 2021. "Speculation and lottery-like demand in cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    66. Bedi, Prateek & Nashier, Tripti, 2020. "On the investment credentials of Bitcoin: A cross-currency perspective," Research in International Business and Finance, Elsevier, vol. 51(C).
    67. Sabah, Nasim, 2020. "Cryptocurrency accepting venues, investor attention, and volatility," Finance Research Letters, Elsevier, vol. 36(C).
    68. Tetsuya Takaishi, 2021. "Time-varying properties of asymmetric volatility and multifractality in Bitcoin," Papers 2102.07425, arXiv.org.
    69. Bourghelle, David & Jawadi, Fredj & Rozin, Philippe, 2022. "Do collective emotions drive bitcoin volatility? A triple regime-switching vector approach," Journal of Economic Behavior & Organization, Elsevier, vol. 196(C), pages 294-306.
    70. Ahmed M. Khedr & Ifra Arif & Pravija Raj P V & Magdi El‐Bannany & Saadat M. Alhashmi & Meenu Sreedharan, 2021. "Cryptocurrency price prediction using traditional statistical and machine‐learning techniques: A survey," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(1), pages 3-34, January.
    71. Chaim, Pedro & Laurini, Márcio P., 2019. "Nonlinear dependence in cryptocurrency markets," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 32-47.
    72. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2019. "A Peek into the Unobservable: Hidden States and Bayesian Inference for the Bitcoin and Ether Price Series," Papers 1909.10957, arXiv.org, revised Jul 2021.
    73. Liu, Yue & Sun, Huaping & Zhang, Jijian & Taghizadeh-Hesary, Farhad, 2020. "Detection of volatility regime-switching for crude oil price modeling and forecasting," Resources Policy, Elsevier, vol. 69(C).
    74. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    75. Khanh Hoang & Cuong C. Nguyen & Kongchheng Poch & Thang X. Nguyen, 2020. "Does Bitcoin Hedge Commodity Uncertainty?," JRFM, MDPI, vol. 13(6), pages 1-14, June.
    76. Olofsson, Petter & Råholm, Anna & Uddin, Gazi Salah & Troster, Victor & Kang, Sang Hoon, 2021. "Ethical and unethical investments under extreme market conditions," International Review of Financial Analysis, Elsevier, vol. 78(C).
    77. Gao, Lingbo & Ye, Wuyi & Guo, Ranran, 2022. "Jointly forecasting the value-at-risk and expected shortfall of Bitcoin with a regime-switching CAViaR model," Finance Research Letters, Elsevier, vol. 48(C).
    78. Dora Almeida & Andreia Dionísio & Isabel Vieira & Paulo Ferreira, 2022. "Uncertainty and Risk in the Cryptocurrency Market," JRFM, MDPI, vol. 15(11), pages 1-17, November.
    79. Walther, Thomas & Klein, Tony & Bouri, Elie, 2019. "Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    80. Mawuli Segnon & Stelios Bekiros, 2019. "Forecasting Volatility in Cryptocurrency Markets," CQE Working Papers 7919, Center for Quantitative Economics (CQE), University of Muenster.
    81. Walid Chkili, 2021. "Modeling Bitcoin price volatility: long memory vs Markov switching," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 433-448, September.
    82. Semeyutin, Artur & O’Neill, Robert, 2019. "A brief survey on the choice of parameters for: “Kernel density estimation for time series data”," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    83. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Exploring the Predictability of Cryptocurrencies via Bayesian Hidden Markov Models," Papers 2011.03741, arXiv.org, revised Dec 2020.

  2. Ardia, David & Bluteau, Keven & Boudt, Kris, 2019. "Questioning the news about economic growth: Sparse forecasting using thousands of news-based sentiment values," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1370-1386.

    Cited by:

    1. Paul Hubert & Fabien Labondance, 2019. "Central bank tone and the dispersion of views within monetary policy committees," Working Papers hal-03403256, HAL.
    2. Gerardin Mathilde, & Ranvier Martial., 2021. "Enrichment of the Banque de France’s monthly business survey: lessons from textual analysis of business leaders’ comments," Working papers 821, Banque de France.
    3. Deimante Teresiene & Greta Keliuotyte-Staniuleniene & Yiyi Liao & Rasa Kanapickiene & Ruihui Pu & Siyan Hu & Xiao-Guang Yue, 2021. "The Impact of the COVID-19 Pandemic on Consumer and Business Confidence Indicators," JRFM, MDPI, vol. 14(4), pages 1-23, April.
    4. Saiz, Lorena & Ashwin, Julian & Kalamara, Eleni, 2021. "Nowcasting euro area GDP with news sentiment: a tale of two crises," Working Paper Series 2616, European Central Bank.
    5. Marc Burri & Daniel Kaufmann, 2020. "A daily fever curve for the Swiss economy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 156(1), pages 1-11, December.
    6. Ksenia Yakovleva, 2018. "Text Mining-based Economic Activity Estimation," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 26-41, December.
    7. Ardia, David & Bluteau, Keven & Kassem, Alaa, 2021. "A century of Economic Policy Uncertainty through the French–Canadian lens," Economics Letters, Elsevier, vol. 205(C).
    8. Yuting Chen & Don Bredin & Valerio Potì & Roman Matkovskyy, 2022. "COVID risk narratives: a computational linguistic approach to the econometric identification of narrative risk during a pandemic," Digital Finance, Springer, vol. 4(1), pages 17-61, March.
    9. Diana Gabrielyan & Lenno Uusküla, 2022. "Inflation Expectations And Consumption With Machine Learning," University of Tartu - Faculty of Economics and Business Administration Working Paper Series 142, Faculty of Economics and Business Administration, University of Tartu (Estonia).
    10. Hubert, Paul & Labondance, Fabien, 2021. "The signaling effects of central bank tone," European Economic Review, Elsevier, vol. 133(C).
    11. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News media vs. FRED-MD for macroeconomic forecasting," Working Papers No 08/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    12. Andres Algaba & David Ardia & Keven Bluteau & Samuel Borms & Kris Boudt, 2020. "Econometrics Meets Sentiment: An Overview Of Methodology And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 34(3), pages 512-547, July.
    13. Simionescu, Mihaela, 2022. "Econometrics of sentiments- sentometrics and machine learning: The improvement of inflation predictions in Romania using sentiment analysis," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    14. Shrub, Yuliya & Rieger, Jonas & Müller, Henrik & Jentsch, Carsten, 2022. "Text data rule - don't they? A study on the (additional) information of Handelsblatt data for nowcasting German GDP in comparison to established economic indicators," Ruhr Economic Papers 964, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    15. Zhang, Yulian & Hamori, Shigeyuki, 2021. "Do news sentiment and the economic uncertainty caused by public health events impact macroeconomic indicators? Evidence from a TVP-VAR decomposition approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 145-162.
    16. Afanasyev, Dmitriy O. & Fedorova, Elena & Ledyaeva, Svetlana, 2021. "Strength of words: Donald Trump's tweets, sanctions and Russia's ruble," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 253-277.
    17. Dooruj Rambaccussing & Craig Menzies & Andrzej Kwiatkowski, 2022. "Look who’s Talking: Individual Committee members’ impact on inflation expectations," Dundee Discussion Papers in Economics 305, Economic Studies, University of Dundee.
    18. Bai, Xiwen & Lam, Jasmine Siu Lee & Jakher, Astha, 2021. "Shipping sentiment and the dry bulk shipping freight market: New evidence from newspaper coverage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    19. Eleni Kalamara & Arthur Turrell & Chris Redl & George Kapetanios & Sujit Kapadia, 2022. "Making text count: Economic forecasting using newspaper text," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 896-919, August.
    20. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2022. "News media versus FRED‐MD for macroeconomic forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 63-81, January.
    21. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
    22. Nyman, Rickard & Kapadia, Sujit & Tuckett, David, 2021. "News and narratives in financial systems: Exploiting big data for systemic risk assessment," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    23. Aromi, J. Daniel & Clements, Adam, 2021. "Facial expressions and the business cycle," Economic Modelling, Elsevier, vol. 102(C).
    24. Claveria, Oscar & Monte, Enric & Torra, Salvador, 2020. "Economic forecasting with evolved confidence indicators," Economic Modelling, Elsevier, vol. 93(C), pages 576-585.
    25. Oscar Claveria & Enric Monte & Salvador Torra, 2021. ""Nowcasting and forecasting GDP growth with machine-learning sentiment indicators"," IREA Working Papers 202103, University of Barcelona, Research Institute of Applied Economics, revised Feb 2021.
    26. Park, Eunhye & Park, Jinah & Hu, Mingming, 2021. "Tourism demand forecasting with online news data mining," Annals of Tourism Research, Elsevier, vol. 90(C).

  3. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.

    Cited by:

    1. Achraf Ghorbel & Ahmed Jeribi, 2021. "Volatility spillovers and contagion between energy sector and financial assets during COVID-19 crisis period," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 449-467, September.
    2. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022. "On the volatility of cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 62(C).
    3. Caporale, Guglielmo Maria & Kang, Woo-Young & Spagnolo, Fabio & Spagnolo, Nicola, 2020. "Non-linearities, cyber attacks and cryptocurrencies," Finance Research Letters, Elsevier, vol. 32(C).
    4. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    5. Hasanov, Akram Shavkatovich & Shaiban, Mohammed Sharaf & Al-Freedi, Ajab, 2020. "Forecasting volatility in the petroleum futures markets: A re-examination and extension," Energy Economics, Elsevier, vol. 86(C).
    6. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    7. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    8. Amaro, Raphael & Pinho, Carlos & Madaleno, Mara, 2022. "Forecasting the Value-at-Risk of energy commodities: A comparison of models and alternative distribution functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 65, pages 77-101.
    9. Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.
    10. Urom, Christian & Onwuka, Kevin O. & Uma, Kalu E. & Yuni, Denis N., 2020. "Regime dependent effects and cyclical volatility spillover between crude oil price movements and stock returns," International Economics, Elsevier, vol. 161(C), pages 10-29.
    11. Abdulkadir Kaya & İkram Yusuf Yarbaşı, 2021. "Forecasting of Volatility in Stock Exchange Markets by MS-GARCH Approach: An Application of Borsa Istanbul," Journal of Research in Economics, Politics & Finance, Ersan ERSOY, vol. 6(1), pages 16-35.
    12. Arian, Hamid & Moghimi, Mehrdad & Tabatabaei, Ehsan & Zamani, Shiva, 2022. "Encoded Value-at-Risk: A machine learning approach for portfolio risk measurement," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 500-525.
    13. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    14. Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
    15. Scarcioffolo, Alexandre R. & Etienne, Xiaoli L., 2021. "Regime-switching energy price volatility: The role of economic policy uncertainty," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 336-356.
    16. Ibrahim, Omar, 2019. "Modelling Risk on the Egyptian Stock Market: Evidence from a Markov-Regime Switching GARCH Process," MPRA Paper 98091, University Library of Munich, Germany.
    17. Guo, Xiaozhu & Huang, Yisu & Liang, Chao & Umar, Muhammad, 2022. "Forecasting volatility of EUA futures: New evidence," Energy Economics, Elsevier, vol. 110(C).
    18. Wu, Chuanzhen, 2021. "Window effect with Markov-switching GARCH model in cryptocurrency market," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    19. Oscar V. De la Torre-Torres & Francisco Venegas-Martínez & Mᵃ Isabel Martínez-Torre-Enciso, 2021. "Enhancing Portfolio Performance and VIX Futures Trading Timing with Markov-Switching GARCH Models," Mathematics, MDPI, vol. 9(2), pages 1-22, January.
    20. Leopoldo Catania & Mads Sandholdt, 2019. "Bitcoin at High Frequency," JRFM, MDPI, vol. 12(1), pages 1-20, February.
    21. Lu-Tao Zhao & Li-Na Liu & Zi-Jie Wang & Ling-Yun He, 2019. "Forecasting Oil Price Volatility in the Era of Big Data: A Text Mining for VaR Approach," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    22. John Weirstrass Muteba Mwamba & Sutene Mwambetania Mwambi, 2021. "Assessing Market Risk in BRICS and Oil Markets: An Application of Markov Switching and Vine Copula," IJFS, MDPI, vol. 9(2), pages 1-22, May.
    23. Halkos, George & Tsirivis, Apostolos, 2019. "Using Value-at-Risk for effective energy portfolio risk management," MPRA Paper 91674, University Library of Munich, Germany.
    24. Katleho Makatjane & Ntebogang Moroke, 2021. "Predicting Extreme Daily Regime Shifts in Financial Time Series Exchange/Johannesburg Stock Exchange—All Share Index," IJFS, MDPI, vol. 9(2), pages 1-18, March.
    25. Oscar V. De la Torre-Torres & Evaristo Galeana-Figueroa & José Álvarez-García, 2019. "A Test of Using Markov-Switching GARCH Models in Oil and Natural Gas Trading," Energies, MDPI, vol. 13(1), pages 1-24, December.
    26. Naeem, Muhammad & Tiwari, Aviral Kumar & Mubashra, Sana & Shahbaz, Muhammad, 2019. "Modeling volatility of precious metals markets by using regime-switching GARCH models," Resources Policy, Elsevier, vol. 64(C).
    27. Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
    28. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    29. Abdessamad Ouchen, 2022. "Is the ESG portfolio less turbulent than a market benchmark portfolio?," Risk Management, Palgrave Macmillan, vol. 24(1), pages 1-33, March.
    30. Rewat Khanthaporn, 2022. "Analysis of Nonlinear Comovement of Benchmark Thai Government Bond Yields," PIER Discussion Papers 183, Puey Ungphakorn Institute for Economic Research.
    31. Chon, Sora & Kim, Jaeho, 2021. "Does the Financial Leverage Effect Depend on Volatility Regimes?," Finance Research Letters, Elsevier, vol. 39(C).
    32. Olofsson, Petter & Råholm, Anna & Uddin, Gazi Salah & Troster, Victor & Kang, Sang Hoon, 2021. "Ethical and unethical investments under extreme market conditions," International Review of Financial Analysis, Elsevier, vol. 78(C).
    33. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh & Kang, Sang Hoon, 2020. "Do Islamic stocks outperform conventional stock sectors during normal and crisis periods? Extreme co-movements and portfolio management analysis," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Keven Bluteau should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.