IDEAS home Printed from https://ideas.repec.org/a/zib/zjmerd/v41y2018i2p106-110.html
   My bibliography  Save this article

Cfd Simulation Of Sawdust Gasification On Open Top Thr oatless Downdraft Gasifier

Author

Listed:
  • Fajri Vidian

    (Department of Mechanical Engineering, Faculty of Engineering, Universitas Sriwijaya, Jalan Raya Palembang - Prabumulih km 32, Indralaya, Ogan Ilir, Sumatera Selatan 30662, Indonesia)

  • Rachmat Dwi Sampurno

    (Department of Mechanical Engineering, Faculty of Engineering, Universitas Sriwijaya, Jalan Raya Palembang - Prabumulih km 32, Indralaya, Ogan Ilir, Sumatera Selatan 30662, Indonesia)

  • Ismail

    (Department of Mechanical Engineering, Faculty of Engineering, Universitas Pancasila, Srengseng Sawah – Jakarta 12640, Indonesia)

Abstract

Sawdust is one of alternative energy sources to substitute the fossil fuels. The utilization of sawdust to produce energy can be done through different types of technologies. Gasification is one of techonology that can be used to convert sawdust into energy. Sawdust has the characteristics of small bulk density and bind to one another. The gasifier type corresponding to these properties is an open top throatless downdraft gasifier. The prediction of producer gas composition can be done through a simulation. This study was conducted to obtain the distribution of combustible gas, tar concentration and temperature at the inside of gasifier on different variations of equivalence ratio by using 2D of computational fluid dynamic. Simulation was performed on the variation of equivalence ratio of 0.2, 0.3 and 0.4. The simulation results showed that the increase of equivalence ratio tend to decrease of CO, H2, CH4 and tar followed by increasing of temperature at the inside of the gasifier.

Suggested Citation

  • Fajri Vidian & Rachmat Dwi Sampurno & Ismail, 2018. "Cfd Simulation Of Sawdust Gasification On Open Top Thr oatless Downdraft Gasifier ," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 41(2), pages 106-110, July.
  • Handle: RePEc:zib:zjmerd:v:41:y:2018:i:2:p:106-110
    DOI: 10.26480/jmerd.02.2018.106.110
    as

    Download full text from publisher

    File URL: https://jmerd.org.my/download/3583/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/jmerd.02.2018.106.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fagbemi, L & Khezami, L & Capart, R, 2001. "Pyrolysis products from different biomasses: application to the thermal cracking of tar," Applied Energy, Elsevier, vol. 69(4), pages 293-306, August.
    2. Martínez, Juan Daniel & Mahkamov, Khamid & Andrade, Rubenildo V. & Silva Lora, Electo E., 2012. "Syngas production in downdraft biomass gasifiers and its application using internal combustion engines," Renewable Energy, Elsevier, vol. 38(1), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:zib:zjmerd:2jmerd2018-106-110 is not listed on IDEAS
    2. Giulio Allesina & Simone Pedrazzi, 2021. "Barriers to Success: A Technical Review on the Limits and Possible Future Roles of Small Scale Gasifiers," Energies, MDPI, vol. 14(20), pages 1-23, October.
    3. Przybyla, Grzegorz & Szlek, Andrzej & Haggith, Dale & Sobiesiak, Andrzej, 2016. "Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas," Energy, Elsevier, vol. 116(P3), pages 1464-1478.
    4. Ngo, Son Ich & Nguyen, Thanh D.B. & Lim, Young-Il & Song, Byung-Ho & Lee, Uen-Do & Choi, Young-Tai & Song, Jae-Hun, 2011. "Performance evaluation for dual circulating fluidized-bed steam gasifier of biomass using quasi-equilibrium three-stage gasification model," Applied Energy, Elsevier, vol. 88(12), pages 5208-5220.
    5. Patel, Vimal R. & Patel, Darshil & Varia, Nandan S. & Patel, Rajesh N., 2017. "Co-gasification of lignite and waste wood in a pilot-scale (10 kWe) downdraft gasifier," Energy, Elsevier, vol. 119(C), pages 834-844.
    6. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    7. Alexander N. Kozlov & Nikita V. Tomin & Denis N. Sidorov & Electo E. S. Lora & Victor G. Kurbatsky, 2020. "Optimal Operation Control of PV-Biomass Gasifier-Diesel-Hybrid Systems Using Reinforcement Learning Techniques," Energies, MDPI, vol. 13(10), pages 1-20, May.
    8. Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
    9. Umeki, Kentaro & Namioka, Tomoaki & Yoshikawa, Kunio, 2012. "Analysis of an updraft biomass gasifier with high temperature steam using a numerical model," Applied Energy, Elsevier, vol. 90(1), pages 38-45.
    10. La Villetta, M. & Costa, M. & Massarotti, N., 2017. "Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 71-88.
    11. Mauro Villarini & Vera Marcantonio & Andrea Colantoni & Enrico Bocci, 2019. "Sensitivity Analysis of Different Parameters on the Performance of a CHP Internal Combustion Engine System Fed by a Biomass Waste Gasifier," Energies, MDPI, vol. 12(4), pages 1-21, February.
    12. Shen, Yafei & Zhao, Peitao & Shao, Qinfu & Takahashi, Fumitake & Yoshikawa, Kunio, 2015. "In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 808-819.
    13. Zahida Aslam & Hu Li & James Hammerton & Gordon Andrews & Andrew Ross & Jon C. Lovett, 2021. "Increasing Access to Electricity: An Assessment of the Energy and Power Generation Potential from Biomass Waste Residues in Tanzania," Energies, MDPI, vol. 14(6), pages 1-22, March.
    14. Chang, C.T. & Costa, M. & La Villetta, M. & Macaluso, A. & Piazzullo, D. & Vanoli, L., 2019. "Thermo-economic analyses of a Taiwanese combined CHP system fuelled with syngas from rice husk gasification," Energy, Elsevier, vol. 167(C), pages 766-780.
    15. Ma, Zhongqing & Zhang, Yimeng & Zhang, Qisheng & Qu, Yongbiao & Zhou, Jianbin & Qin, Hengfei, 2012. "Design and experimental investigation of a 190 kWe biomass fixed bed gasification and polygeneration pilot plant using a double air stage downdraft approach," Energy, Elsevier, vol. 46(1), pages 140-147.
    16. Sarafraz, M.M. & Jafarian, M. & Arjomandi, M. & Nathan, G.J., 2017. "Potential use of liquid metal oxides for chemical looping gasification: A thermodynamic assessment," Applied Energy, Elsevier, vol. 195(C), pages 702-712.
    17. Skorek-Osikowska, Anna & Bartela, Łukasz & Kotowicz, Janusz & Sobolewski, Aleksander & Iluk, Tomasz & Remiorz, Leszek, 2014. "The influence of the size of the CHP (combined heat and power) system integrated with a biomass fueled gas generator and piston engine on the thermodynamic and economic effectiveness of electricity an," Energy, Elsevier, vol. 67(C), pages 328-340.
    18. Bilgen, Selçuk & Keleş, Sedat & Kaygusuz, Kamil, 2012. "Calculation of higher and lower heating values and chemical exergy values of liquid products obtained from pyrolysis of hazelnut cupulae," Energy, Elsevier, vol. 41(1), pages 380-385.
    19. Lounici, Mohand Said & Loubar, Khaled & Tarabet, Lyes & Balistrou, Mourad & Niculescu, Dan-Catalin & Tazerout, Mohand, 2014. "Towards improvement of natural gas-diesel dual fuel mode: An experimental investigation on performance and exhaust emissions," Energy, Elsevier, vol. 64(C), pages 200-211.
    20. Germán Navarrete Cereijo & Pedro Galione Klot & Pedro Curto-Risso, 2024. "Two-Stage Global Biomass Pyrolysis Model for Combustion Applications: Predicting Product Composition with a Focus on Kinetics, Energy, and Mass Balances Consistency," Energies, MDPI, vol. 17(19), pages 1-19, October.
    21. Moradi, Ramin & Cioccolanti, Luca & Del Zotto, Luca & Renzi, Massimiliano, 2023. "Comparative sensitivity analysis of micro-scale gas turbine and supercritical CO2 systems with bottoming organic Rankine cycles fed by the biomass gasification for decentralized trigeneration," Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zjmerd:v:41:y:2018:i:2:p:106-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing The email address of this maintainer does not seem to be valid anymore. Please ask Zibeline International Publishing to update the entry or send us the correct address (email available below). General contact details of provider: https://jmerd.org.my/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.