IDEAS home Printed from https://ideas.repec.org/a/zib/zbmsmk/v7y2023i1p07-15.html
   My bibliography  Save this article

Application Of Robust Regression For Portfolio Optimization

Author

Listed:
  • Ezra Putranda Setiawan

    (Universitas Negeri Yogyakarta Fakultas Matematika dan Ilmu Pengetahuan Alam)

  • Dedi Rosadi

    (Universitas Gadjah Mada)

Abstract

The single-index model is a portfolio optimization method that uses each asset’s beta’. In general, the beta is estimated using the return data by the least square method. However, the return data frequently contains several outliers, so the estimation resulting from the least square method is inaccurate. This study examines several beta estimators from robust regression methods, namely the least absolute value estimator, M-estimator, LMS-estimator, LTS-estimator, MM-estimator, and Tau estimator to estimate the beta of each asset and make an optimal portfolio based on this estimated value. We also evaluate the effect of robust beta estimators on the stability and performance of each portfolio. We present the Sharpe ratio and some turnover measures, namely the l-period portfolio turnover, maximum turnover, lower bound single-asset turnover, and lower bound multiple-asset turnover. Among various estimators used here, the Tau estimator is the best estimator to replace the OLS for estimating the beta.

Suggested Citation

  • Ezra Putranda Setiawan & Dedi Rosadi, 2023. "Application Of Robust Regression For Portfolio Optimization," Matrix Science Mathematic (MSMK), Zibeline International Publishing, vol. 7(1), pages 07-15, January.
  • Handle: RePEc:zib:zbmsmk:v:7:y:2023:i:1:p:07-15
    DOI: 10.26480/msmk.01.2023.07.15
    as

    Download full text from publisher

    File URL: https://matrixsmathematic.com/archives/1msmk2022/1msmk2022-05-12.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26480/msmk.01.2023.07.15?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Almorox, J. & Benito, M. & Hontoria, C., 2005. "Estimation of monthly Angström–Prescott equation coefficients from measured daily data in Toledo, Spain," Renewable Energy, Elsevier, vol. 30(6), pages 931-936.
    2. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2015. "Review and statistical analysis of different global solar radiation sunshine models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1869-1880.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.
    2. Makade, Rahul G. & Jamil, Basharat, 2018. "Statistical analysis of sunshine based global solar radiation (GSR) models for tropical wet and dry climatic Region in Nagpur, India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 22-43.
    3. Paulescu, M. & Stefu, N. & Calinoiu, D. & Paulescu, E. & Pop, N. & Boata, R. & Mares, O., 2016. "Ångström–Prescott equation: Physical basis, empirical models and sensitivity analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 495-506.
    4. Hassan, Gasser E. & Youssef, M. Elsayed & Mohamed, Zahraa E. & Ali, Mohamed A. & Hanafy, Ahmed A., 2016. "New Temperature-based Models for Predicting Global Solar Radiation," Applied Energy, Elsevier, vol. 179(C), pages 437-450.
    5. Zhang, Jianyuan & Zhao, Li & Deng, Shuai & Xu, Weicong & Zhang, Ying, 2017. "A critical review of the models used to estimate solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 314-329.
    6. Paulescu, Marius & Badescu, Viorel & Budea, Sanda & Dumitrescu, Alexandru, 2022. "Empirical sunshine-based models vs online estimators for solar resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Enrique A. Enríquez-Velásquez & Victor H. Benitez & Sergey G. Obukhov & Luis C. Félix-Herrán & Jorge de-J. Lozoya-Santos, 2020. "Estimation of Solar Resource Based on Meteorological and Geographical Data: Sonora State in Northwestern Territory of Mexico as Case Study," Energies, MDPI, vol. 13(24), pages 1-41, December.
    8. Zhou, Hanmi & Ma, Linshuang & Niu, Xiaoli & Xiang, Youzhen & Chen, Jiageng & Su, Yumin & Li, Jichen & Lu, Sibo & Chen, Cheng & Wu, Qi, 2024. "A novel hybrid model combined with ensemble embedded feature selection method for estimating reference evapotranspiration in the North China Plain," Agricultural Water Management, Elsevier, vol. 296(C).
    9. Chang, Kai & Zhang, Qingyuan, 2019. "Improvement of the hourly global solar model and solar radiation for air-conditioning design in China," Renewable Energy, Elsevier, vol. 138(C), pages 1232-1238.
    10. Jahani, Babak & Dinpashoh, Y. & Raisi Nafchi, Atefeh, 2017. "Evaluation and development of empirical models for estimating daily solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 878-891.
    11. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    12. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Deep Residual model for short-term multi-step solar radiation prediction," Renewable Energy, Elsevier, vol. 190(C), pages 408-424.
    13. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Ma, Xin & Bai, Hua, 2019. "Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 168-186.
    14. Mohamed A. Ali & Ashraf Elsayed & Islam Elkabani & Mohammad Akrami & M. Elsayed Youssef & Gasser E. Hassan, 2023. "Optimizing Artificial Neural Networks for the Accurate Prediction of Global Solar Radiation: A Performance Comparison with Conventional Methods," Energies, MDPI, vol. 16(17), pages 1-30, August.
    15. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2024. "Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting," Applied Energy, Elsevier, vol. 353(PA).
    16. Qiu, Rangjian & Li, Longan & Wu, Lifeng & Agathokleous, Evgenios & Liu, Chunwei & Zhang, Baozhong & Luo, Yufeng & Sun, Shanlei, 2022. "Modeling daily global solar radiation using only temperature data: Past, development, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    17. Aurelia Rybak & Aleksandra Rybak & Jarosław Joostberens & Spas D. Kolev, 2022. "Cluster Analysis of the EU-27 Countries in Light of the Guiding Principles of the European Green Deal, with Particular Emphasis on Poland," Energies, MDPI, vol. 15(14), pages 1-20, July.
    18. Zhao, Qun & Yao, Wanxiang & Zhang, Chunxiao & Wang, Xiao & Wang, Yan, 2019. "Study on the influence of fog and haze on solar radiation based on scattering-weakening effect," Renewable Energy, Elsevier, vol. 134(C), pages 178-185.
    19. Bakirci, Kadir, 2009. "Models of solar radiation with hours of bright sunshine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2580-2588, December.
    20. Dieudonné, Nzoko Tayo & Armel, Talla Konchou Franck & Hermann, Djeudjo Temene & Vidal, Aloyem Kaze Claude & René, Tchinda, 2023. "Optimization of Short-Term Forecast of Electric Power Demand in the city of Yaoundé-Cameroon by a hybrid model based on the combination of neural networks and econometric methods from a designed energ," Technological Forecasting and Social Change, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbmsmk:v:7:y:2023:i:1:p:07-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing The email address of this maintainer does not seem to be valid anymore. Please ask Zibeline International Publishing to update the entry or send us the correct address (email available below). General contact details of provider: https://matrixsmathematic.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.