IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v3y2018p5-16id1348.html
   My bibliography  Save this article

Analysis of complex decision problems based on cumulative prospect theory

Author

Listed:
  • Renata Dudzińska-Baryła

Abstract

Complex risky decision problems involve sequences of decisions and random events. The choice at a given stage depends on the decisions taken in the previous stages, as well as on the realizations of the random events that occurred earlier. In the analysis of such situations, decision trees are used, and the criterion for choosing the optimal decision is to maximize the expected monetary value. Unfortunately, this approach often does not reflect the actual choices of individual decision makers. In descriptive decision theory, the criterion of maximizing the expected monetary value is replaced by a subjective valuation that takes into account the relative outcomes and their probabilities. This paper presents a proposal to use the principles of cumulative prospect theory to analyse complex decision problems. The concept of a certainty equivalent is used to make it possible to compare risky and non-risky alternatives.

Suggested Citation

  • Renata Dudzińska-Baryła, 2018. "Analysis of complex decision problems based on cumulative prospect theory," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 28(3), pages 5-16.
  • Handle: RePEc:wut:journl:v:3:y:2018:p:5-16:id:1348
    DOI: 10.5277/ord180301
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/1348%20-%20published.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5277/ord180301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    2. Henry Stott, 2006. "Cumulative prospect theory's functional menagerie," Journal of Risk and Uncertainty, Springer, vol. 32(2), pages 101-130, March.
    3. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    4. George Wu & Richard Gonzalez, 1996. "Curvature of the Probability Weighting Function," Management Science, INFORMS, vol. 42(12), pages 1676-1690, December.
    5. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    6. Birnbaum, Michael H & Navarrete, Juan B, 1998. "Testing Descriptive Utility Theories: Violations of Stochastic Dominance and Cumulative Independence," Journal of Risk and Uncertainty, Springer, vol. 17(1), pages 49-78, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Glöckner & Baiba Renerte & Ulrich Schmidt, 2020. "Violations of coalescing in parametric utility measurement," Theory and Decision, Springer, vol. 89(4), pages 471-501, November.
    2. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    3. Aleksandr Alekseev, 2022. "Give me a challenge or give me a raise," Experimental Economics, Springer;Economic Science Association, vol. 25(1), pages 170-202, February.
    4. Arjan Verschoor & Ben D’Exelle, 2022. "Probability weighting for losses and for gains among smallholder farmers in Uganda," Theory and Decision, Springer, vol. 92(1), pages 223-258, February.
    5. Peter Brooks & Simon Peters & Horst Zank, 2014. "Risk behavior for gain, loss, and mixed prospects," Theory and Decision, Springer, vol. 77(2), pages 153-182, August.
    6. Li, Baibing & Hensher, David A., 2017. "Risky weighting in discrete choice," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 1-21.
    7. Aurélien Baillon & Han Bleichrodt & Vitalie Spinu, 2020. "Searching for the Reference Point," Management Science, INFORMS, vol. 66(1), pages 93-112, January.
    8. Mahesh Nagarajan & Steven Shechter, 2014. "Prospect Theory and the Newsvendor Problem," Management Science, INFORMS, vol. 60(4), pages 1057-1062, April.
    9. Adam Booij & Bernard Praag & Gijs Kuilen, 2010. "A parametric analysis of prospect theory’s functionals for the general population," Theory and Decision, Springer, vol. 68(1), pages 115-148, February.
    10. Özalp Özer & Yanchong Zheng, 2016. "Markdown or Everyday Low Price? The Role of Behavioral Motives," Management Science, INFORMS, vol. 62(2), pages 326-346, February.
    11. Laurent Denant-Boemont & Olivier L’Haridon, 2013. "La rationalité à l'épreuve de l'économie comportementale," Revue française d'économie, Presses de Sciences-Po, vol. 0(2), pages 35-89.
    12. Daniel Cavagnaro & Mark Pitt & Richard Gonzalez & Jay Myung, 2013. "Discriminating among probability weighting functions using adaptive design optimization," Journal of Risk and Uncertainty, Springer, vol. 47(3), pages 255-289, December.
    13. Kairies-Schwarz, Nadja & Kokot, Johanna & Vomhof, Markus & Weßling, Jens, 2017. "Health insurance choice and risk preferences under cumulative prospect theory – an experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 137(C), pages 374-397.
    14. Diecidue, Enrico & Schmidt, Ulrich & Zank, Horst, 2009. "Parametric weighting functions," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1102-1118, May.
    15. George Wu & Alex B. Markle, 2008. "An Empirical Test of Gain-Loss Separability in Prospect Theory," Management Science, INFORMS, vol. 54(7), pages 1322-1335, July.
    16. Peon, David & Calvo, Anxo & Antelo, Manel, 2014. "A short-but-efficient test for overconfidence and prospect theory. Experimental validation," MPRA Paper 54135, University Library of Munich, Germany.
    17. Martín Egozcue & Luis Fuentes García & Ričardas Zitikis, 2023. "The Slicing Method: Determining Insensitivity Regions of Probability Weighting Functions," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1369-1402, April.
    18. Arjun Chatrath & Rohan A. Christie‐David & Hong Miao & Sanjay Ramchander, 2019. "Losers and prospectors in the short‐term options market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(6), pages 721-743, June.
    19. Zhong, Xiaoling & Wang, Junbo, 2018. "Prospect theory and corporate bond returns: An empirical study," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 25-48.
    20. Jinrui Pan & Craig S. Webb & Horst Zank, 2019. "Delayed probabilistic risk attitude: a parametric approach," Theory and Decision, Springer, vol. 87(2), pages 201-232, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:3:y:2018:p:5-16:id:1348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.