IDEAS home Printed from https://ideas.repec.org/a/wsi/jikmxx/v18y2019i02ns0219649219500199.html
   My bibliography  Save this article

Community Detection in Social Networks: Literature Review

Author

Listed:
  • Seema Rani

    (Department of Computer Science, Jamia Millia Islamia, New Delhi, India)

  • Monica Mehrotra

    (Department of Computer Science, Jamia Millia Islamia, New Delhi, India)

Abstract

Due to easy and cost-effective ways, communication has amplified many folds among humans across the globe irrespective of time and geographic location. This has led to the construction of an enormous and a wide variety of social networks that is a network of social interactions or personal relations. Social network analysis (SNA) is the inspection of social networks in order to understand the participant’s arrangement and behaviour. Discovering communities from the social network has become one of the key research areas in SNA. Communities discovered from social networks facilitate its members so as to interact with relatable people who have similar or comparable interests. However, in present time, the enormous growth of social networks demands an intensive investigation of recent work carried out for identifying community division in social networks. This paper is an attempt to enlighten the ongoing developments in the domain of Community detection (CD) for SNA. Additionally, it sheds light on the algorithms which use meta-heuristic optimisation techniques to hit upon the community structure in social networks. Further, this paper gives a comparison of proposed methods in recent years and most frequently used optimisation approaches in the domain of CD. It also describes some application areas where CD methods have been used. This guides and encourages researchers to probe and take ahead the work in the area of detecting communities from social networks.

Suggested Citation

  • Seema Rani & Monica Mehrotra, 2019. "Community Detection in Social Networks: Literature Review," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-28, June.
  • Handle: RePEc:wsi:jikmxx:v:18:y:2019:i:02:n:s0219649219500199
    DOI: 10.1142/S0219649219500199
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219649219500199
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219649219500199?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Di Jin & Dayou Liu & Bo Yang & Jie Liu & Dongxiao He, 2011. "Ant Colony Optimization With A New Random Walk Model For Community Detection In Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 14(05), pages 795-815.
    2. Gómez, Daniel & Figueira, José Rui & Eusébio, Augusto, 2013. "Modeling centrality measures in social network analysis using bi-criteria network flow optimization problems," European Journal of Operational Research, Elsevier, vol. 226(2), pages 354-365.
    3. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    4. Jin, Hong & Wang, Shuliang & Li, Chenyang, 2013. "Community detection in complex networks by density-based clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4606-4618.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei, Liguo & Deng, Yong, 2017. "A new method to identify influential nodes based on relative entropy," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 257-267.
    2. You, Tao & Cheng, Hui-Min & Ning, Yi-Zi & Shia, Ben-Chang & Zhang, Zhong-Yuan, 2016. "Community detection in complex networks using density-based clustering algorithm and manifold learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 221-230.
    3. Li, Yafang & Jia, Caiyan & Yu, Jian, 2015. "A parameter-free community detection method based on centrality and dispersion of nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 321-334.
    4. Rusinowska, Agnieszka & Taalaibekova, Akylai, 2019. "Opinion formation and targeting when persuaders have extreme and centrist opinions," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 9-27.
    5. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    6. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    7. Manuel, Paul & Brešar, Boštjan & Klavžar, Sandi, 2022. "The geodesic-transversal problem," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    8. Dong-Rui Chen & Chuang Liu & Yi-Cheng Zhang & Zi-Ke Zhang, 2019. "Predicting Financial Extremes Based on Weighted Visual Graph of Major Stock Indices," Complexity, Hindawi, vol. 2019, pages 1-17, October.
    9. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    10. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    11. Lin, Zhen & Zheng, Xiaolin & Xin, Nan & Chen, Deren, 2014. "CK-LPA: Efficient community detection algorithm based on label propagation with community kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 386-399.
    12. Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    13. Andreas Spitz & Anna Gimmler & Thorsten Stoeck & Katharina Anna Zweig & Emőke-Ágnes Horvát, 2016. "Assessing Low-Intensity Relationships in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    14. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.
    15. Shenshen Bai & Longjie Li & Jianjun Cheng & Shijin Xu & Xiaoyun Chen, 2018. "Predicting Missing Links Based on a New Triangle Structure," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    16. Bowen Yan & Steve Gregory, 2013. "Identifying Communities and Key Vertices by Reconstructing Networks from Samples," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-14, April.
    17. Zhang, Rong & Ashuri, Baabak & Shyr, Yu & Deng, Yong, 2018. "Forecasting Construction Cost Index based on visibility graph: A network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 239-252.
    18. Xia, Yongxiang & Pang, Wenbo & Zhang, Xuejun, 2021. "Mining relationships between performance of link prediction algorithms and network structure," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    19. Zhou, Ming-Yang & Xiong, Wen-Man & Wu, Xiang-Yang & Zhang, Yu-Xia & Liao, Hao, 2018. "Overlapping influence inspires the selection of multiple spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 76-83.
    20. Qiaoran Yang & Zhiliang Dong & Yichi Zhang & Man Li & Ziyi Liang & Chao Ding, 2021. "Who Will Establish New Trade Relations? Looking for Potential Relationship in International Nickel Trade," Sustainability, MDPI, vol. 13(21), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:jikmxx:v:18:y:2019:i:02:n:s0219649219500199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/jikm/jikm.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.