IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i8p2794-2802.html
   My bibliography  Save this article

Self-similar scaling of density in complex real-world networks

Author

Listed:
  • Blagus, Neli
  • Šubelj, Lovro
  • Bajec, Marko

Abstract

Despite their diverse origin, networks of large real-world systems reveal a number of common properties including small-world phenomena, scale-free degree distributions and modularity. Recently, network self-similarity as a natural outcome of the evolution of real-world systems has also attracted much attention within the physics literature. Here we investigate the scaling of density in complex networks under two classical box-covering renormalizations–network coarse-graining–and also different community-based renormalizations. The analysis on over 50 real-world networks reveals a power-law scaling of network density and size under adequate renormalization technique, yet irrespective of network type and origin. The results thus advance a recent discovery of a universal scaling of density among different real-world networks [P.J. Laurienti, K.E. Joyce, Q.K. Telesford, J.H. Burdette, S. Hayasaka, Universal fractal scaling of self-organized networks, Physica A 390 (20) (2011) 3608–3613] and imply an existence of a scale-free density also within–among different self-similar scales of–complex real-world networks. The latter further improves the comprehension of self-similar structure in large real-world networks with several possible applications.

Suggested Citation

  • Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:8:p:2794-2802
    DOI: 10.1016/j.physa.2011.12.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111009915
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.12.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heath, Lenwood S. & Parikh, Nidhi, 2011. "Generating random graphs with tunable clustering coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4577-4587.
    2. Gallos, Lazaros K. & Song, Chaoming & Makse, Hernán A., 2007. "A review of fractality and self-similarity in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(2), pages 686-691.
    3. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    4. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    5. Yong-Yeol Ahn & James P. Bagrow & Sune Lehmann, 2010. "Link communities reveal multiscale complexity in networks," Nature, Nature, vol. 466(7307), pages 761-764, August.
    6. L. Šubelj & M. Bajec, 2011. "Robust network community detection using balanced propagation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 81(3), pages 353-362, June.
    7. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    8. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    9. Jon M. Kleinberg, 2000. "Navigation in a small world," Nature, Nature, vol. 406(6798), pages 845-845, August.
    10. Barabási, Albert-László & Ravasz, Erzsébet & Vicsek, Tamás, 2001. "Deterministic scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(3), pages 559-564.
    11. Carletti, Timoteo & Righi, Simone, 2010. "Weighted Fractal Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2134-2142.
    12. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    13. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    14. Freeman, Linton C., 1982. "Centered graphs and the structure of ego networks," Mathematical Social Sciences, Elsevier, vol. 3(3), pages 291-304, October.
    15. Šubelj, Lovro & Bajec, Marko, 2011. "Community structure of complex software systems: Analysis and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2968-2975.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Yi, 2014. "The similarity of weights on edges and discovering of community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 560-570.
    2. Ma, Ling-ling & Ma, Chuang & Zhang, Hai-Feng & Wang, Bing-Hong, 2016. "Identifying influential spreaders in complex networks based on gravity formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 205-212.
    3. Ding, Jingyi & Jiao, Licheng & Wu, Jianshe & Hou, Yunting & Qi, Yutao, 2015. "Prediction of missing links based on multi-resolution community division," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 76-85.
    4. Li, Dongyan & Wang, Xingyuan & Huang, Penghe, 2017. "A fractal growth model: Exploring the connection pattern of hubs in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 200-211.
    5. Jiang, Lincheng & Zhao, Xiang & Ge, Bin & Xiao, Weidong & Ruan, Yirun, 2019. "An efficient algorithm for mining a set of influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 58-65.
    6. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    7. Wang, Ying & Zheng, Yunan & Shi, Xuelei & Liu, Yiguang, 2022. "An effective heuristic clustering algorithm for mining multiple critical nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    8. Dong, Chen & Xu, Guiqiong & Meng, Lei & Yang, Pingle, 2022. "CPR-TOPSIS: A novel algorithm for finding influential nodes in complex networks based on communication probability and relative entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    9. Ai, Jun & He, Tao & Su, Zhan & Shang, Lihui, 2022. "Identifying influential nodes in complex networks based on spreading probability," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    10. Wang, Jing & Ma, Xiao-Jing & Xiang, Bing-Bing & Bao, Zhong-Kui & Zhang, Hai-Feng, 2022. "Maximizing influence in social networks by distinguishing the roles of seeds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    11. Zhang, Liwen & Xiang, Linying & Zhu, Jiawei, 2022. "Relationship between fragility and resilience in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    12. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2014. "Assessing the effectiveness of real-world network simplification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 134-146.
    13. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2017. "Empirical comparison of network sampling: How to choose the most appropriate method?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 136-148.
    14. Georgi Yordanov Georgiev & Atanu Chatterjee & Germano Iannacchione, 2017. "Exponential Self-Organization and Moore’s Law: Measures and Mechanisms," Complexity, Hindawi, vol. 2017, pages 1-9, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jin & Le, Anbo & Wang, Qin & Xi, Lifeng, 2016. "A small-world and scale-free network generated by Sierpinski Pentagon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 126-135.
    2. Sun, Lina & Huang, Ning & Li, Ruiying & Bai, Yanan, 2019. "A new fractal reliability model for networks with node fractal growth and no-loop," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 699-707.
    3. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    4. Guillaume, Jean-Loup & Latapy, Matthieu, 2006. "Bipartite graphs as models of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 795-813.
    5. Chen, Mu & Yu, Boming & Xu, Peng & Chen, Jun, 2007. "A new deterministic complex network model with hierarchical structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 707-717.
    6. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2014. "Assessing the effectiveness of real-world network simplification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 134-146.
    7. Dai, Meifeng & Shao, Shuxiang & Su, Weiyi & Xi, Lifeng & Sun, Yanqiu, 2017. "The modified box dimension and average weighted receiving time of the weighted hierarchical graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 46-58.
    8. Xie, Wen-Jie & Zhou, Wei-Xing, 2011. "Horizontal visibility graphs transformed from fractional Brownian motions: Topological properties versus the Hurst index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3592-3601.
    9. Ikeda, Nobutoshi, 2019. "Growth model for fractal scale-free networks generated by a random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 424-434.
    10. Comellas, Francesc & Sampels, Michael, 2002. "Deterministic small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 309(1), pages 231-235.
    11. Li, Hui & Zhao, Hai & Cai, Wei & Xu, Jiu-Qiang & Ai, Jun, 2013. "A modular attachment mechanism for software network evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2025-2037.
    12. Liao, Hao & Wu, Xingtong & Wang, Bing-Hong & Wu, Xiangyang & Zhou, Mingyang, 2019. "Solving the speed and accuracy of box-covering problem in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 954-963.
    13. Havlin, Shlomo & Stanley, H. Eugene & Bashan, Amir & Gao, Jianxi & Kenett, Dror Y., 2015. "Percolation of interdependent network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 4-19.
    14. Ikeda, Nobutoshi, 2021. "Stratified structure of fractal scale-free networks generated by local rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    15. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    16. Andreas Spitz & Anna Gimmler & Thorsten Stoeck & Katharina Anna Zweig & Emőke-Ágnes Horvát, 2016. "Assessing Low-Intensity Relationships in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    17. Yao, Jialing & Sun, Bingbin & Xi, lifeng, 2019. "Fractality of evolving self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 211-216.
    18. Biggiero, Lucio & Angelini, Pier Paolo, 2015. "Hunting scale-free properties in R&D collaboration networks: Self-organization, power-law and policy issues in the European aerospace research area," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 21-43.
    19. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    20. Ikeda, Nobutoshi, 2020. "Fractal networks induced by movements of random walkers on a tree graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:8:p:2794-2802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.