IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v20y2017i4p379-391.html
   My bibliography  Save this article

Least Risky Change Propagation Path Analysis in Product Design Process

Author

Listed:
  • Inayat Ullah
  • Dunbing Tang
  • Qi Wang
  • Leilei Yin

Abstract

Requirement changes play a significant role in the product design and development process and constantly change due to the customers’ expectations. This research seeks to develop an advanced approach for the product designing with an aim to predict the least risky change propagation path (CPP) in the product's structure. This is achieved by developing an algorithm and a mathematical model taking the overall propagated risk into consideration. The risks associated with requirement changes, which would result in rework, are quantified in terms of propagation probability and change impact. The proposed algorithm relates the change risk to the amount of rework needed to be done. The outcomes indicate the suitability of the proposed method in assessing different least risky CPPs to support the designer in reducing redesign time. Moreover, this technique also provides additional information, such as the number of distinct design components, and change steps involved in change propagation. A case study is presented to demonstrate the practicability of the proposed technique.

Suggested Citation

  • Inayat Ullah & Dunbing Tang & Qi Wang & Leilei Yin, 2017. "Least Risky Change Propagation Path Analysis in Product Design Process," Systems Engineering, John Wiley & Sons, vol. 20(4), pages 379-391, July.
  • Handle: RePEc:wly:syseng:v:20:y:2017:i:4:p:379-391
    DOI: 10.1002/sys.21400
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.21400
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.21400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Salah E. Elmaghraby & Jerzy Kamburowski, 1992. "The Analysis of Activity Networks Under Generalized Precedence Relations (GPRs)," Management Science, INFORMS, vol. 38(9), pages 1245-1263, September.
    2. Robert P. Smith & Steven D. Eppinger, 1997. "A Predictive Model of Sequential Iteration in Engineering Design," Management Science, INFORMS, vol. 43(8), pages 1104-1120, August.
    3. Junguang Zhang & Xiwei Song & Hongyu Chen & Ruixia (Sandy) Shi, 2015. "Optimisation of critical chain sequencing based on activities’ information flow interactions," International Journal of Production Research, Taylor & Francis Journals, vol. 53(20), pages 6231-6241, October.
    4. Adam M. Ross & Donna H. Rhodes & Daniel E. Hastings, 2008. "Defining changeability: Reconciling flexibility, adaptability, scalability, modifiability, and robustness for maintaining system lifecycle value," Systems Engineering, John Wiley & Sons, vol. 11(3), pages 246-262, September.
    5. Ernst Fricke & Armin P. Schulz, 2005. "Design for changeability (DfC): Principles to enable changes in systems throughout their entire lifecycle," Systems Engineering, John Wiley & Sons, vol. 8(4), pages 1-1.
    6. Ernst Fricke & Bernd Gebhard & Herbert Negele & Eduard Igenbergs, 2000. "Coping with changes: Causes, findings, and strategies," Systems Engineering, John Wiley & Sons, vol. 3(4), pages 169-179.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edwin C. Y. Koh, 2017. "A study on the Requirements to Support the Accurate Prediction of Engineering Change Propagation," Systems Engineering, John Wiley & Sons, vol. 20(2), pages 147-157, March.
    2. Erica Gralla & Zoe Szajnfarber, 2016. "Characterizing Representational Uncertainty in System Design and Operations," Systems Engineering, John Wiley & Sons, vol. 19(6), pages 535-548, November.
    3. Adam M. Ross & Donna H. Rhodes & Daniel E. Hastings, 2008. "Defining changeability: Reconciling flexibility, adaptability, scalability, modifiability, and robustness for maintaining system lifecycle value," Systems Engineering, John Wiley & Sons, vol. 11(3), pages 246-262, September.
    4. Alessandro Golkar & Edward F. Crawley, 2014. "A Framework for Space Systems Architecture under Stakeholder Objectives Ambiguity," Systems Engineering, John Wiley & Sons, vol. 17(4), pages 479-502, December.
    5. David A. Broniatowski, 2017. "Flexibility Due to Abstraction and Decomposition," Systems Engineering, John Wiley & Sons, vol. 20(2), pages 98-117, March.
    6. Guofeng Ma & Jianyao Jia & Tiancheng Zhu & Shan Jiang, 2019. "A Critical Design Structure Method for Project Schedule Development under Rework Risks," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    7. René Krikhaar & Wim Mosterman & Niels Veerman & Chris Verhoef, 2009. "Enabling system evolution through configuration management on the hardware/software boundary," Systems Engineering, John Wiley & Sons, vol. 12(3), pages 233-264, September.
    8. George L. Vairaktarakis, 2003. "The Value of Resource Flexibility in the Resource-Constrained Job Assignment Problem," Management Science, INFORMS, vol. 49(6), pages 718-732, June.
    9. Luo, Jianxi & Triulzi, Giorgio, 2018. "Cyclic dependence, vertical integration, and innovation: The case of Japanese electronics sector in the 1990s," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 46-55.
    10. Lin, Jun & Qian, Yanjun & Cui, Wentian & Goh, Thong Ngee, 2015. "An effective approach for scheduling coupled activities in development projects," European Journal of Operational Research, Elsevier, vol. 243(1), pages 97-108.
    11. Atif Açıkgöz & Irem Demirkan & Gary P. Latham & Cemil Kuzey, 2021. "The Relationship Between Unlearning and Innovation Ambidexterity with the Performance of New Product Development Teams," Group Decision and Negotiation, Springer, vol. 30(4), pages 945-982, August.
    12. Markus Hoppe & Avner Engel & Shalom Shachar, 2007. "SysTest: Improving the verification, validation, and testing process— Assessing six industrial pilot projects," Systems Engineering, John Wiley & Sons, vol. 10(4), pages 323-347, December.
    13. Thomke, Stefan H., 1998. "Simulation, learning and R&D performance: Evidence from automotive development," Research Policy, Elsevier, vol. 27(1), pages 55-74, May.
    14. Ulrich Dorndorf & Erwin Pesch & Toàn Phan-Huy, 2000. "A Time-Oriented Branch-and-Bound Algorithm for Resource-Constrained Project Scheduling with Generalised Precedence Constraints," Management Science, INFORMS, vol. 46(10), pages 1365-1384, October.
    15. Brian M. Kennedy & Durward K. Sobek & Michael N. Kennedy, 2014. "Reducing Rework by Applying Set‐Based Practices Early in the Systems Engineering Process," Systems Engineering, John Wiley & Sons, vol. 17(3), pages 278-296, September.
    16. Nitindra R. Joglekar & Ali A. Yassine & Steven D. Eppinger & Daniel E. Whitney, 2001. "Performance of Coupled Product Development Activities with a Deadline," Management Science, INFORMS, vol. 47(12), pages 1605-1620, December.
    17. Nicole Megow & Rolf H. Möhring & Jens Schulz, 2011. "Decision Support and Optimization in Shutdown and Turnaround Scheduling," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 189-204, May.
    18. Ryan Boas & Bruce G. Cameron & Edward F. Crawley, 2013. "Divergence and lifecycle offsets in product families with commonality," Systems Engineering, John Wiley & Sons, vol. 16(2), pages 175-192, June.
    19. Munehiko Itoh, 2004. "Modularization for Product Competitiveness - Analysis of Modularization in the Digital Camera Industry -," Discussion Paper Series 164, Research Institute for Economics & Business Administration, Kobe University.
    20. Bianco, Lucio & Caramia, Massimiliano & Giordani, Stefano, 2022. "Project scheduling with generalized precedence relations: A new method to analyze criticalities and flexibilities," European Journal of Operational Research, Elsevier, vol. 298(2), pages 451-462.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:20:y:2017:i:4:p:379-391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.