IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v46y2000i10p1365-1384.html
   My bibliography  Save this article

A Time-Oriented Branch-and-Bound Algorithm for Resource-Constrained Project Scheduling with Generalised Precedence Constraints

Author

Listed:
  • Ulrich Dorndorf

    () (Faculty of Economics, University of Bonn, Adenauerallee 24-42, D-53113 Bonn, Germany)

  • Erwin Pesch

    () (Faculty of Economics, University of Bonn, Adenauerallee 24-42, D-53113 Bonn, Germany)

  • Toàn Phan-Huy

    () (Faculty of Economics, University of Bonn, Adenauerallee 24-42, D-53113 Bonn, Germany)

Abstract

Resource-constrained project scheduling with generalised precedence constraints is a very general scheduling model with applications in areas such as make-to-order production planning. We describe a time-oriented branch-and-bound algorithm that uses constraint-propagation techniques which actively exploit the temporal and resource constraints of the problem in order to reduce the search space. Extensive computational experiments with systematically generated test problems show that the algorithm solves more problems to optimality than other exact solution procedures which have recently been proposed, and that the truncated version of the algorithm is also a very good heuristic.

Suggested Citation

  • Ulrich Dorndorf & Erwin Pesch & Toàn Phan-Huy, 2000. "A Time-Oriented Branch-and-Bound Algorithm for Resource-Constrained Project Scheduling with Generalised Precedence Constraints," Management Science, INFORMS, vol. 46(10), pages 1365-1384, October.
  • Handle: RePEc:inm:ormnsc:v:46:y:2000:i:10:p:1365-1384
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.46.10.1365.12272
    Download Restriction: no

    References listed on IDEAS

    as
    1. Salah E. Elmaghraby & Jerzy Kamburowski, 1992. "The Analysis of Activity Networks Under Generalized Precedence Relations (GPRs)," Management Science, INFORMS, vol. 38(9), pages 1245-1263, September.
    2. J. Carlier & E. Pinson, 1989. "An Algorithm for Solving the Job-Shop Problem," Management Science, INFORMS, vol. 35(2), pages 164-176, February.
    3. Zhan, Ji, 1994. "Heuristics for scheduling resource-constrained projects in MPM networks," European Journal of Operational Research, Elsevier, vol. 76(1), pages 192-205, July.
    4. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    5. F. Brian Talbot & James H. Patterson, 1978. "An Efficient Integer Programming Algorithm with Network Cuts for Solving Resource-Constrained Scheduling Problems," Management Science, INFORMS, vol. 24(11), pages 1163-1174, July.
    6. De Reyck, Bert & Herroelen, willy, 1998. "A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations," European Journal of Operational Research, Elsevier, vol. 111(1), pages 152-174, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Estévez-Fernández, Arantza, 2012. "A game theoretical approach to sharing penalties and rewards in projects," European Journal of Operational Research, Elsevier, vol. 216(3), pages 647-657.
    2. Rolf H. Möhring & Andreas S. Schulz & Frederik Stork & Marc Uetz, 2003. "Solving Project Scheduling Problems by Minimum Cut Computations," Management Science, INFORMS, vol. 49(3), pages 330-350, March.
    3. Brucker, Peter & Knust, Sigrid, 2003. "Lower bounds for resource-constrained project scheduling problems," European Journal of Operational Research, Elsevier, vol. 149(2), pages 302-313, September.
    4. Bianco, Lucio & Caramia, Massimiliano, 2012. "An exact algorithm to minimize the makespan in project scheduling with scarce resources and generalized precedence relations," European Journal of Operational Research, Elsevier, vol. 219(1), pages 73-85.
    5. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    6. Heilmann, Roland, 2003. "A branch-and-bound procedure for the multi-mode resource-constrained project scheduling problem with minimum and maximum time lags," European Journal of Operational Research, Elsevier, vol. 144(2), pages 348-365, January.
    7. Li, Haitao & Womer, Norman K., 2015. "Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 246(1), pages 20-33.
    8. Drexl, Andreas & Nikulin, Yuri, 2005. "Multicriteria time window-constrained project scheduling with applications to airport gate assignment. Part I: Methodology," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 595, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    9. Čapek, R. & Šůcha, P. & Hanzálek, Z., 2012. "Production scheduling with alternative process plans," European Journal of Operational Research, Elsevier, vol. 217(2), pages 300-311.
    10. Chen, Jiaqiong & Askin, Ronald G., 2009. "Project selection, scheduling and resource allocation with time dependent returns," European Journal of Operational Research, Elsevier, vol. 193(1), pages 23-34, February.
    11. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2017. "Flight gate assignment and recovery strategies with stochastic arrival and departure times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 65-93, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:46:y:2000:i:10:p:1365-1384. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.