IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v301y2021i1d10.1007_s10479-020-03753-y.html
   My bibliography  Save this article

Revenue sharing for resource reallocation among project activity contractors

Author

Listed:
  • Xiaowei Lin

    (Nanjing University
    Nanjing University)

  • Jing Zhou

    (Nanjing University)

  • Lianmin Zhang

    (Nanjing University
    The Shenzhen Research Institute of Big Data)

  • Yinlian Zeng

    (The Chinese University of Hong Kong
    University of Electronic Science and Technology)

Abstract

Outsourcing project activities to contractors has become more and more popular in recent years, and activity contractors can increase the revenue of a project through cooperation. In this paper we consider cooperation between activity contractors through resource reallocation, and address two main issues. First, we seek to find the optimal scheme for resource reallocation among contractors. To this end, a linear programming model is established, and some properties of the optimal resource reallocation scheme are discussed. Second, we propose several revenue sharing schemes for contractors based on a cooperative game theory framework. Three schemes are introduced and compared: a scheme in the core, the Shapley value, and a proportional revenue sharing scheme. We show that the cooperative game of activity contractors in a general project network does not necessarily have a nonempty core. However, we identify a special class of project network for which the core of the cooperative game of activity contractors always exists and an allocation in the core is proposed based on shadow prices. The managerial insights we obtain in this paper are as follows. (i) Contractors should cooperate. (ii) Resources should not be transferred between contractors with high transferring costs. (iii) Resources are always transferred from contractors on non-critical paths to contractors on critical paths, and on critical paths, resources are always transferred from low efficiency contractors to high efficiency contractors.

Suggested Citation

  • Xiaowei Lin & Jing Zhou & Lianmin Zhang & Yinlian Zeng, 2021. "Revenue sharing for resource reallocation among project activity contractors," Annals of Operations Research, Springer, vol. 301(1), pages 121-141, June.
  • Handle: RePEc:spr:annopr:v:301:y:2021:i:1:d:10.1007_s10479-020-03753-y
    DOI: 10.1007/s10479-020-03753-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03753-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03753-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Peyton Young, 1987. "On Dividing an Amount According to Individual Claims or Liabilities," Mathematics of Operations Research, INFORMS, vol. 12(3), pages 398-414, August.
    2. Yinlian Zeng & Lianmin Zhang & Xiaoqiang Cai & Jun Li, 2018. "Cost Sharing for Capacity Transfer in Cooperating Queueing Systems," Production and Operations Management, Production and Operations Management Society, vol. 27(4), pages 644-662, April.
    3. Rodica Brânzei & Giulio Ferrari & Vito Fragnelli & Stef Tijs, 2002. "Two Approaches to the Problem of Sharing Delay Costs in Joint Projects," Annals of Operations Research, Springer, vol. 109(1), pages 359-374, January.
    4. Dov Samet & Eitan Zemel, 1984. "On the Core and Dual Set of Linear Programming Games," Mathematics of Operations Research, INFORMS, vol. 9(2), pages 309-316, May.
    5. Lloyd S. Shapley, 1967. "On balanced sets and cores," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 14(4), pages 453-460.
    6. Trine Platz & Herbert Hamers, 2015. "On games arising from multi-depot Chinese postman problems," Annals of Operations Research, Springer, vol. 235(1), pages 675-692, December.
    7. Kedar Naphade & S. David Wu & Robert Storer, 1997. "Problem space search algorithms for resource-constrained project scheduling," Annals of Operations Research, Springer, vol. 70(0), pages 307-326, April.
    8. Jeroen Suijs & Peter Borm & Herbert Hamers & Marieke Quant & Maurice Koster, 2005. "Communication and Cooperation in Public Network Situations," Annals of Operations Research, Springer, vol. 137(1), pages 117-140, July.
    9. Aristide Mingozzi & Vittorio Maniezzo & Salvatore Ricciardelli & Lucio Bianco, 1998. "An Exact Algorithm for the Resource-Constrained Project Scheduling Problem Based on a New Mathematical Formulation," Management Science, INFORMS, vol. 44(5), pages 714-729, May.
    10. Vicente Valls & Francisco Ballestín & Sacramento Quintanilla, 2004. "A Population-Based Approach to the Resource-Constrained Project Scheduling Problem," Annals of Operations Research, Springer, vol. 131(1), pages 305-324, October.
    11. Kolisch, Rainer, 1996. "Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation," European Journal of Operational Research, Elsevier, vol. 90(2), pages 320-333, April.
    12. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    13. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    14. Ichiro Nishizaki & Tomohiro Hayashida & Yuki Shintomi, 2016. "A core-allocation for a network restricted linear production game," Annals of Operations Research, Springer, vol. 238(1), pages 389-410, March.
    15. Javier Castro & Daniel Gómez & Juan Tejada, 2014. "Allocating slacks in stochastic PERT network," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(1), pages 37-52, March.
    16. Bezalel Peleg & Peter Sudhölter, 2007. "Introduction to the Theory of Cooperative Games," Theory and Decision Library C, Springer, edition 0, number 978-3-540-72945-7, July.
    17. De Reyck, Bert & Herroelen, willy, 1998. "A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations," European Journal of Operational Research, Elsevier, vol. 111(1), pages 152-174, November.
    18. Pilar Tormos & Antonio Lova, 2001. "A Competitive Heuristic Solution Technique for Resource-Constrained Project Scheduling," Annals of Operations Research, Springer, vol. 102(1), pages 65-81, February.
    19. Ichiro Nishizaki & Tomohiro Hayashida & Yuki Shintomi, 2016. "A core-allocation for a network restricted linear production game," Annals of Operations Research, Springer, vol. 238(1), pages 389-410, March.
    20. Shapley, Lloyd S & Shubik, Martin, 1969. "Pure Competition, Coalitional Power, and Fair Division," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 10(3), pages 337-362, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
    2. Chen, Jiaqiong & Askin, Ronald G., 2009. "Project selection, scheduling and resource allocation with time dependent returns," European Journal of Operational Research, Elsevier, vol. 193(1), pages 23-34, February.
    3. Debels, Dieter & De Reyck, Bert & Leus, Roel & Vanhoucke, Mario, 2006. "A hybrid scatter search/electromagnetism meta-heuristic for project scheduling," European Journal of Operational Research, Elsevier, vol. 169(2), pages 638-653, March.
    4. Alexander Tesch, 2020. "A polyhedral study of event-based models for the resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 23(2), pages 233-251, April.
    5. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    6. Kolisch, Rainer & Hartmann, Sonke, 2006. "Experimental investigation of heuristics for resource-constrained project scheduling: An update," European Journal of Operational Research, Elsevier, vol. 174(1), pages 23-37, October.
    7. D. Debels & M. Vanhoucke, 2005. "A Decomposition-Based Heuristic For The Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/293, Ghent University, Faculty of Economics and Business Administration.
    8. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    9. Bernardo F. Almeida & Isabel Correia & Francisco Saldanha-da-Gama, 2018. "A biased random-key genetic algorithm for the project scheduling problem with flexible resources," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 283-308, July.
    10. Hartmann, Sönke, 2011. "Project scheduling with resource capacities and requests varying with time," Working Paper Series 01/2011, Hamburg School of Business Administration (HSBA).
    11. Moumene, Khaled & Ferland, Jacques A., 2009. "Activity list representation for a generalization of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 199(1), pages 46-54, November.
    12. Amadeu A. Coco & Christophe Duhamel & Andréa Cynthia Santos, 2020. "Modeling and solving the multi-period disruptions scheduling problem on urban networks," Annals of Operations Research, Springer, vol. 285(1), pages 427-443, February.
    13. Rolf H. Möhring & Andreas S. Schulz & Frederik Stork & Marc Uetz, 2003. "Solving Project Scheduling Problems by Minimum Cut Computations," Management Science, INFORMS, vol. 49(3), pages 330-350, March.
    14. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustin Barrios-Sarmiento, 2021. "A memetic algorithm to address the multi-node resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 24(4), pages 413-429, August.
    15. Yang-Kuei Lin & Chin Soon Chong, 2017. "Fast GA-based project scheduling for computing resources allocation in a cloud manufacturing system," Journal of Intelligent Manufacturing, Springer, vol. 28(5), pages 1189-1201, June.
    16. Moehring, Rolf & Uetz, Marc & Stork, Frederik & Schulz, Andreas S., 2002. "Solving Project Scheduling Problems by Minimum Cut," Working papers 4231-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    17. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2005. "Justification and RCPSP: A technique that pays," European Journal of Operational Research, Elsevier, vol. 165(2), pages 375-386, September.
    18. Luise-Sophie Hoffmann & Carolin Kellenbrink & Stefan Helber, 2020. "Simultaneous structuring and scheduling of multiple projects with flexible project structures," Journal of Business Economics, Springer, vol. 90(5), pages 679-711, June.
    19. Raphael Kramer & Mauro Dell’Amico & Manuel Iori, 2017. "A batching-move iterated local search algorithm for the bin packing problem with generalized precedence constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6288-6304, November.
    20. Peteghem, Vincent Van & Vanhoucke, Mario, 2010. "A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 409-418, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:301:y:2021:i:1:d:10.1007_s10479-020-03753-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.