IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v28y2017i5d10.1007_s10845-015-1074-0.html
   My bibliography  Save this article

Fast GA-based project scheduling for computing resources allocation in a cloud manufacturing system

Author

Listed:
  • Yang-Kuei Lin

    (Feng Chia University)

  • Chin Soon Chong

    (A-star)

Abstract

Cloud manufacturing is becoming an increasingly popular enterprise model in which computing resources are made available on-demand to the user as needed. Cloud manufacturing aims at providing low-cost, resource-sharing and effective coordination. In this study, we present a genetic algorithm (GA) based resource constraint project scheduling, incorporating a number of new ideas (enhancements and local search) for solving computing resources allocation problems in a cloud manufacturing system. A newly generated offspring may not be feasible due to task precedence and resource availability constraints. Conflict resolutions and enhancements are performed on newly generated offsprings after crossover or mutation. The local search can exploit the neighborhood of solutions to find better schedules. Due to its complex characteristics, computing resources allocation in a cloud manufacturing system is NP-hard. Computational results show that the proposed GA can rapidly provide a good quality schedule that can optimally allocate computing resources and satisfy users’ demands.

Suggested Citation

  • Yang-Kuei Lin & Chin Soon Chong, 2017. "Fast GA-based project scheduling for computing resources allocation in a cloud manufacturing system," Journal of Intelligent Manufacturing, Springer, vol. 28(5), pages 1189-1201, June.
  • Handle: RePEc:spr:joinma:v:28:y:2017:i:5:d:10.1007_s10845-015-1074-0
    DOI: 10.1007/s10845-015-1074-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-015-1074-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-015-1074-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zamani, Reza, 2013. "A competitive magnet-based genetic algorithm for solving the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 552-559.
    2. Kolisch, Rainer, 1996. "Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation," European Journal of Operational Research, Elsevier, vol. 90(2), pages 320-333, April.
    3. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    4. J. Alcaraz & C. Maroto, 2001. "A Robust Genetic Algorithm for Resource Allocation in Project Scheduling," Annals of Operations Research, Springer, vol. 102(1), pages 83-109, February.
    5. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
    6. Kolisch, Rainer & Hartmann, Sonke, 2006. "Experimental investigation of heuristics for resource-constrained project scheduling: An update," European Journal of Operational Research, Elsevier, vol. 174(1), pages 23-37, October.
    7. Eugeniusz Nowicki & Czeslaw Smutnicki, 1996. "A Fast Taboo Search Algorithm for the Job Shop Problem," Management Science, INFORMS, vol. 42(6), pages 797-813, June.
    8. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2008. "A hybrid genetic algorithm for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(2), pages 495-508, March.
    9. Bouleimen, K. & Lecocq, H., 2003. "A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version," European Journal of Operational Research, Elsevier, vol. 149(2), pages 268-281, September.
    10. Egon Balas & Alkis Vazacopoulos, 1998. "Guided Local Search with Shifting Bottleneck for Job Shop Scheduling," Management Science, INFORMS, vol. 44(2), pages 262-275, February.
    11. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    12. Kolisch, Rainer & Sprecher, Arno, 1997. "PSPLIB - A project scheduling problem library : OR Software - ORSEP Operations Research Software Exchange Program," European Journal of Operational Research, Elsevier, vol. 96(1), pages 205-216, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asma Talhi & Virginie Fortineau & Jean-Charles Huet & Samir Lamouri, 2019. "Ontology for cloud manufacturing based Product Lifecycle Management," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2171-2192, June.
    2. Di Liang & Jieyi Wang & Ran Bhamra & Liezhao Lu & Yuting Li, 2022. "A Multi-Service Composition Model for Tasks in Cloud Manufacturing Based on VS–ABC Algorithm," Mathematics, MDPI, vol. 10(21), pages 1-24, October.
    3. Haghnegahdar, Lida & Chen, Yu & Wang, Yong, 2022. "Enhancing dynamic energy network management using a multiagent cloud-fog structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Baodong Li & Yu Yang & Jiafu Su & Zhichao Liang & Sheng Wang, 2020. "Two-sided matching decision-making model with hesitant fuzzy preference information for configuring cloud manufacturing tasks and resources," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 2033-2047, December.
    5. Shiyong Yin & Jinsong Bao & Jie Zhang & Jie Li & Junliang Wang & Xiaodi Huang, 2020. "Real-time task processing for spinning cyber-physical production systems based on edge computing," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 2069-2087, December.
    6. Yankai Wang & Shilong Wang & Bo Yang & Bo Gao & Sibao Wang, 2022. "An effective adaptive adjustment method for service composition exception handling in cloud manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 735-751, March.
    7. Wang Shijie & Zhang Yingfeng, 2021. "A credit-based dynamical evaluation method for the smart configuration of manufacturing services under Industrial Internet of Things," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1091-1115, April.
    8. Shuai Zhang & Yangbing Xu & Wenyu Zhang & Dejian Yu, 2019. "A new fuzzy QoS-aware manufacture service composition method using extended flower pollination algorithm," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2069-2083, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peteghem, Vincent Van & Vanhoucke, Mario, 2010. "A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 409-418, March.
    2. Kellenbrink, Carolin & Helber, Stefan, 2015. "Scheduling resource-constrained projects with a flexible project structure," European Journal of Operational Research, Elsevier, vol. 246(2), pages 379-391.
    3. Moumene, Khaled & Ferland, Jacques A., 2009. "Activity list representation for a generalization of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 199(1), pages 46-54, November.
    4. Rahman Torba & Stéphane Dauzère-Pérès & Claude Yugma & Cédric Gallais & Juliette Pouzet, 2024. "Solving a real-life multi-skill resource-constrained multi-project scheduling problem," Annals of Operations Research, Springer, vol. 338(1), pages 69-114, July.
    5. Xabier A. Martin & Rosa Herrero & Angel A. Juan & Javier Panadero, 2024. "An Agile Adaptive Biased-Randomized Discrete-Event Heuristic for the Resource-Constrained Project Scheduling Problem," Mathematics, MDPI, vol. 12(12), pages 1-21, June.
    6. D. Debels & M. Vanhoucke, 2005. "A Decomposition-Based Heuristic For The Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/293, Ghent University, Faculty of Economics and Business Administration.
    7. Coelho, José & Vanhoucke, Mario, 2011. "Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers," European Journal of Operational Research, Elsevier, vol. 213(1), pages 73-82, August.
    8. Feifei Li & Zhe Xu, 2018. "A multi-agent system for distributed multi-project scheduling with two-stage decomposition," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-24, October.
    9. Zhenyuan Liu & Lei Xiao & Jing Tian, 2016. "An activity-list-based nested partitions algorithm for resource-constrained project scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4744-4758, August.
    10. Debels, Dieter & De Reyck, Bert & Leus, Roel & Vanhoucke, Mario, 2006. "A hybrid scatter search/electromagnetism meta-heuristic for project scheduling," European Journal of Operational Research, Elsevier, vol. 169(2), pages 638-653, March.
    11. Fündeling, C.-U. & Trautmann, N., 2010. "A priority-rule method for project scheduling with work-content constraints," European Journal of Operational Research, Elsevier, vol. 203(3), pages 568-574, June.
    12. Alexander Tesch, 2020. "A polyhedral study of event-based models for the resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 23(2), pages 233-251, April.
    13. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    14. André Schnabel & Carolin Kellenbrink & Stefan Helber, 2018. "Profit-oriented scheduling of resource-constrained projects with flexible capacity constraints," Business Research, Springer;German Academic Association for Business Research, vol. 11(2), pages 329-356, September.
    15. Sepehr Proon & Mingzhou Jin, 2011. "A genetic algorithm with neighborhood search for the resource‐constrained project scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(2), pages 73-82, March.
    16. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2008. "A hybrid genetic algorithm for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(2), pages 495-508, March.
    17. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
    18. Alireza Etminaniesfahani & Hanyu Gu & Leila Moslemi Naeni & Amir Salehipour, 2024. "An efficient relax-and-solve method for the multi-mode resource constrained project scheduling problem," Annals of Operations Research, Springer, vol. 338(1), pages 41-68, July.
    19. Vanhoucke, Mario & Coelho, José, 2016. "An approach using SAT solvers for the RCPSP with logical constraints," European Journal of Operational Research, Elsevier, vol. 249(2), pages 577-591.
    20. Bernardo F. Almeida & Isabel Correia & Francisco Saldanha-da-Gama, 2018. "A biased random-key genetic algorithm for the project scheduling problem with flexible resources," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 283-308, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:28:y:2017:i:5:d:10.1007_s10845-015-1074-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.