IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v40y2020i2p421-434.html
   My bibliography  Save this article

Modeling Pathology Workload and Complexity to Manage Risks and Improve Patient Quality and Safety

Author

Listed:
  • David M. Vanlandingham
  • Wesley Hampton
  • Kimberly M. Thompson
  • Kamran Badizadegan

Abstract

Anatomic pathology (AP) laboratories provide critical diagnostic information that help determine patient treatments and outcomes, but the risks of AP operations and their impact on patient safety and quality of care remain poorly recognized and undermanaged. Hospital‐based laboratories face an operational and risk management challenge because clinical work of unknown quantity and complexity arrives with little advance notice, which results in fluctuations in workload that can push operations beyond planned capacity, leading to diagnostic delays and potential errors. Modeling the dynamics of workload and complexity in AP offers the opportunity to better use available information to manage risks. We developed a stock‐and‐flow model of a typical AP laboratory operation and identified key exogenous inputs that drive AP work. To test the model, we generated training and validations data sets by combining data from the electronic medical records and laboratory information systems over multiple years. We demonstrate the implementation of 10‐day AP work forecast generated on a daily basis, and show its performance in comparison with actual work. Although the model somewhat underpredicts work as currently implemented, it provides a framework for prospective management of resources to ensure quality during workload surges. Although full implementation requires additional model development, we show that AP workload largely depends on few and accessible clinical inputs. Recognizing that level loading of work in a hospital is not practical, predictive modeling of work can empower laboratories to triage, schedule, or mobilize resources more effectively and better manage risks that reduce the quality or timeliness of diagnostic information.

Suggested Citation

  • David M. Vanlandingham & Wesley Hampton & Kimberly M. Thompson & Kamran Badizadegan, 2020. "Modeling Pathology Workload and Complexity to Manage Risks and Improve Patient Quality and Safety," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 421-434, February.
  • Handle: RePEc:wly:riskan:v:40:y:2020:i:2:p:421-434
    DOI: 10.1111/risa.13393
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13393
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13393?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Issac Shams & Saeede Ajorlou & Kai Yang, 2015. "A predictive analytics approach to reducing 30-day avoidable readmissions among patients with heart failure, acute myocardial infarction, pneumonia, or COPD," Health Care Management Science, Springer, vol. 18(1), pages 19-34, March.
    2. Kimberly M. Thompson & Radboud J. Duintjer Tebbens & Mark A. Pallansch & Steven G.F. Wassilak & Stephen L. Cochi, 2015. "Polio Eradicators Use Integrated Analytical Models to Make Better Decisions," Interfaces, INFORMS, vol. 45(1), pages 5-25, February.
    3. Emmanuel Garbolino & Jean‐Pierre Chery & Franck Guarnieri, 2016. "A Simplified Approach to Risk Assessment Based on System Dynamics: An Industrial Case Study," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 16-29, January.
    4. Reza Kazemi & Ali Mosleh & Meghan Dierks, 2017. "A Hybrid Methodology for Modeling Risk of Adverse Events in Complex Health‐Care Settings," Risk Analysis, John Wiley & Sons, vol. 37(3), pages 421-440, March.
    5. Elisabeth Paté‐Cornell & Louis Anthony Cox, 2014. "Improving Risk Management: From Lame Excuses to Principled Practice," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1228-1239, July.
    6. Joseph Sharit, 2000. "A Modeling Framework for Exposing Risks in Complex Systems," Risk Analysis, John Wiley & Sons, vol. 20(4), pages 469-482, August.
    7. Fabio Lopez & Chiara Di Bartolo & Tommaso Piazza & Antonino Passannanti & Jörg C. Gerlach & Bruno Gridelli & Fabio Triolo, 2010. "A Quality Risk Management Model Approach for Cell Therapy Manufacturing," Risk Analysis, John Wiley & Sons, vol. 30(12), pages 1857-1871, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    2. James H. Lambert & Rachel K. Jennings & Nilesh N. Joshi, 2006. "Integration of risk identification with business process models," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 187-198, September.
    3. Li, Mei & Liu, Zixian & Li, Xiaopeng & Liu, Yiliu, 2019. "Dynamic risk assessment in healthcare based on Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 327-334.
    4. Sahar AlMashaqbeh & Jose Eduardo Munive-Hernandez, 2023. "Risk Analysis under a Circular Economy Context Using a Systems Thinking Approach," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    5. James H. Lambert & Benjamin L. Schulte & Priya Sarda, 2005. "Tracking the complexity of interactions between risk incidents and engineering systems," Systems Engineering, John Wiley & Sons, vol. 8(3), pages 262-277, September.
    6. Hendalianpour, Ayad & Liu, Peide & Amirghodsi, Sirous & Hamzehlou, Mohammad, 2022. "Designing a System Dynamics model to simulate criteria affecting oil and gas development contracts," Resources Policy, Elsevier, vol. 78(C).
    7. Aven, Terje, 2020. "Three influential risk foundation papers from the 80s and 90s: Are they still state-of-the-art?," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    8. Chen, Sai & Ding, Yueting & Song, Yan & Zhang, Ming & Nie, Rui, 2023. "Study on China's energy system resilience under the scenarios of long-term shortage of imported oil," Energy, Elsevier, vol. 270(C).
    9. Francesca Ieva & Anna Maria Paganoni & Teresa Pietrabissa, 2017. "Dynamic clustering of hazard functions: an application to disease progression in chronic heart failure," Health Care Management Science, Springer, vol. 20(3), pages 353-364, September.
    10. John Hamer Powell & Michael Hammond & Albert Chen & Navonil Mustafee, 2018. "Human Agency in Disaster Planning: A Systems Approach," Risk Analysis, John Wiley & Sons, vol. 38(7), pages 1422-1443, July.
    11. Jacob Taarup‐Esbensen, 2020. "A Resilience‐Based Approach to Risk Assessments—Building Resilient Organizations under Arctic Conditions," Risk Analysis, John Wiley & Sons, vol. 40(11), pages 2399-2412, November.
    12. Qianxiang Zhu & Yuanqing Qin & Chunjie Zhou & Weiwei Gao, 2018. "Extended multilevel flow model-based dynamic risk assessment for cybersecurity protection in industrial production systems," International Journal of Distributed Sensor Networks, , vol. 14(6), pages 15501477187, June.
    13. Negar Darabi & Niyousha Hosseinichimeh, 2020. "System dynamics modeling in health and medicine: a systematic literature review," System Dynamics Review, System Dynamics Society, vol. 36(1), pages 29-73, January.
    14. Martina de Gramatica & Fabio Massacci & Woohyun Shim & Uğur Turhan & Julian Williams, 2017. "Agency Problems and Airport Security: Quantitative and Qualitative Evidence on the Impact of Security Training," Risk Analysis, John Wiley & Sons, vol. 37(2), pages 372-395, February.
    15. Suiyao Chen & Nan Kong & Xuxue Sun & Hongdao Meng & Mingyang Li, 2019. "Claims data-driven modeling of hospital time-to-readmission risk with latent heterogeneity," Health Care Management Science, Springer, vol. 22(1), pages 156-179, March.
    16. Chen, Sai & Zhang, Ming & Ding, Yueting & Nie, Rui, 2020. "Resilience of China's oil import system under external shocks: A system dynamics simulation analysis," Energy Policy, Elsevier, vol. 146(C).
    17. Jonathan B. Wiener, 2020. "Learning to Manage the Multirisk World," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2137-2143, November.
    18. Kimberly M. Thompson, 2017. "Modeling and Managing the Risks of Measles and Rubella: A Global Perspective Part II," Risk Analysis, John Wiley & Sons, vol. 37(6), pages 1041-1051, June.
    19. Jérémie Gallien & Stephen C. Graves & Alan Scheller-Wolf, 2016. "OM Forum—Practice-Based Research in Operations Management: What It Is, Why Do It, Related Challenges, and How to Overcome Them," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 5-14, February.
    20. Justin Pence & Zahra Mohaghegh, 2020. "A Discourse on the Incorporation of Organizational Factors into Probabilistic Risk Assessment: Key Questions and Categorical Review," Risk Analysis, John Wiley & Sons, vol. 40(6), pages 1183-1211, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:40:y:2020:i:2:p:421-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.