IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v19y1999i6p1091-1100.html
   My bibliography  Save this article

Comparison of Six Dose‐Response Models for Use with Food‐Borne Pathogens

Author

Listed:
  • David L. Holcomb
  • Mary A. Smith
  • Glenn O. Ware
  • Yen‐Con Hung
  • Robert E. Brackett
  • Michael P. Doyle

Abstract

Food‐related illness in the United States is estimated to affect over six million people per year and cost the economy several billion dollars. These illnesses and costs could be reduced if minimum infectious doses were established and used as the basis of regulations and monitoring. However, standard methodologies for dose‐response assessment are not yet formulated for microbial risk assessment. The objective of this study was to compare dose response models for food‐borne pathogens and determine which models were most appropriate for a range of pathogens. The statistical models proposed in the literature and chosen for comparison purposes were log‐normal,(19) log‐logistic,(17) exponential,(7,9,17)ß‐Poisson(7,9,18) and Welbull‐Gamma.(3) These were fit to four data sets also taken from published literature, Shigella fiexneri,(9,12,13)Shigella dysenteriae,(9,11)Campylobacter jejuni,(15,16) and Salmonella typhosa,(7,14) usingthe method of maximum likelihood. The Weibull‐gamma, the only model with three parameters, was also the only model capable of fitting all the data sets examined using the maximum likelihood estimation for comparisons. Infectious doses were also calculated using each model. Within any given data set, the infectious dose estimated to affect one percent of the population ranged from one order of magnitude to as much as nine orders of magnitude, illustrating the differences in extrapolation of the dose response models. More data are needed to compare models and examine extrapolation from high to low doses for food‐borne pathogens.

Suggested Citation

  • David L. Holcomb & Mary A. Smith & Glenn O. Ware & Yen‐Con Hung & Robert E. Brackett & Michael P. Doyle, 1999. "Comparison of Six Dose‐Response Models for Use with Food‐Borne Pathogens," Risk Analysis, John Wiley & Sons, vol. 19(6), pages 1091-1100, December.
  • Handle: RePEc:wly:riskan:v:19:y:1999:i:6:p:1091-1100
    DOI: 10.1111/j.1539-6924.1999.tb01130.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.1999.tb01130.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.1999.tb01130.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rose, J.B. & Haas, C.N. & Regli, S., 1991. "Risk assessment and control of waterborne giardiasis," American Journal of Public Health, American Public Health Association, vol. 81(6), pages 709-713.
    2. Harry M. Marks & Margaret E. Coleman & C.‐T. Jordan Lin & Tanya Roberts, 1998. "Topics in Microbial Risk Assessment: Dynamic Flow Tree Process," Risk Analysis, John Wiley & Sons, vol. 18(3), pages 309-328, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles N. Haas, 2002. "Conditional Dose‐Response Relationships for Microorganisms: Development and Application," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 455-463, June.
    2. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    3. Charles N. Haas, 2002. "On the Risk of Mortality to Primates Exposed to Anthrax Spores," Risk Analysis, John Wiley & Sons, vol. 22(2), pages 189-193, April.
    4. Margaret E. Coleman & Sonja Sandberg & Steven A. Anderson, 2003. "Impact of Microbial Ecology of Meat and Poultry Products on Predictions from Exposure Assessment Scenarios for Refrigerated Storage," Risk Analysis, John Wiley & Sons, vol. 23(1), pages 215-228, February.
    5. Frank J. Loge & Elisabetta Lambertini & Mark A. Borchardt & Hakan Başağaoğlu & Timothy R. Ginn, 2009. "Effects of Etiological Agent and Bather Shedding of Pathogens on Interpretation of Epidemiological Data Used to Establish Recreational Water Quality Standards," Risk Analysis, John Wiley & Sons, vol. 29(2), pages 257-266, February.
    6. Louis A. Cox & Douglas A. Popken, 2004. "Quantifying Human Health Risks from Virginiamycin Used in Chickens," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 271-288, February.
    7. David W. Gaylor, 2005. "Risk/Benefit Assessments of Human Diseases: Optimum Dose for Intervention," Risk Analysis, John Wiley & Sons, vol. 25(1), pages 161-168, February.
    8. Miao Guo & Abhinav Mishra & Robert L. Buchanan & Jitender P. Dubey & Dolores E. Hill & H. Ray Gamble & Jeffrey L. Jones & Xianzhi Du & Abani K. Pradhan, 2016. "Development of Dose‐Response Models to Predict the Relationship for Human Toxoplasma gondii Infection Associated with Meat Consumption," Risk Analysis, John Wiley & Sons, vol. 36(5), pages 926-938, May.
    9. Rowena D. Kosmider & Pádraig Nally & Robin R. L. Simons & Adam Brouwer & Susan Cheung & Emma L. Snary & Marion Wooldridge, 2010. "Attribution of Human VTEC O157 Infection from Meat Products: A Quantitative Risk Assessment Approach," Risk Analysis, John Wiley & Sons, vol. 30(5), pages 753-765, May.
    10. Philip J. Schmidt & Katarina D. M. Pintar & Aamir M. Fazil & Edward Topp, 2013. "Harnessing the Theoretical Foundations of the Exponential and Beta‐Poisson Dose‐Response Models to Quantify Parameter Uncertainty Using Markov Chain Monte Carlo," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1677-1693, September.
    11. Hojin Moon & Hyun‐Joo Kim & James J. Chen & Ralph L. Kodell, 2005. "Model Averaging Using the Kullback Information Criterion in Estimating Effective Doses for Microbial Infection and Illness," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1147-1159, October.
    12. Starke, Yolanda & Ralston, Katherine L. & Brent, C. Philip & Riggins, Toija & Lin, Chung-Tung Jordan, 2002. "Consumer Food Safety Behavior: A Case Study In Hamburger Cooking And Ordering," Agricultural Economic Reports 34061, United States Department of Agriculture, Economic Research Service.
    13. Régis Pouillot & Véronique Goulet & Marie Laure Delignette‐Muller & Aurélie Mahé & Marie Cornu, 2009. "Quantitative Risk Assessment of Listeria monocytogenes in French Cold‐Smoked Salmon: II. Risk Characterization," Risk Analysis, John Wiley & Sons, vol. 29(6), pages 806-819, June.
    14. Thu Le-Thi & Phuc Pham-Duc & Christian Zurbrügg & Toan Luu-Quoc & Huong Nguyen-Mai & Tu Vu-Van & Hung Nguyen-Viet, 2017. "Diarrhea risks by exposure to livestock waste in Vietnam using quantitative microbial risk assessment," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 62(1), pages 83-91, February.
    15. Hojin Moon & Steven B. Kim & James J. Chen & Nysia I. George & Ralph L. Kodell, 2013. "Model Uncertainty and Model Averaging in the Estimation of Infectious Doses for Microbial Pathogens," Risk Analysis, John Wiley & Sons, vol. 33(2), pages 220-231, February.
    16. Tucker Burch, 2019. "Validation of Quantitative Microbial Risk Assessment Using Epidemiological Data from Outbreaks of Waterborne Gastrointestinal Disease," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 599-615, March.
    17. Peter F. M. Teunis & Nico J. D. Nagelkerke & Charles N. Haas, 1999. "Dose Response Models For Infectious Gastroenteritis," Risk Analysis, John Wiley & Sons, vol. 19(6), pages 1251-1260, December.
    18. Harriet Namata & Marc Aerts & Christel Faes & Peter Teunis, 2008. "Model Averaging in Microbial Risk Assessment Using Fractional Polynomials," Risk Analysis, John Wiley & Sons, vol. 28(4), pages 891-905, August.
    19. Starbird, S. Andrew, 2000. "Designing Food Safety Regulations: The Effect Of Inspection Policy And Penalties For Noncompliance On Food Processor Behavior," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(2), pages 1-20, December.
    20. Raymond A. Zilinskas & Bruce Hope & D. Warner North, 2004. "A Discussion of Findings and Their Possible Implications from a Workshop on Bioterrorism Threat Assessment and Risk Management," Risk Analysis, John Wiley & Sons, vol. 24(4), pages 901-908, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:19:y:1999:i:6:p:1091-1100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.