IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v36y2016i5p926-938.html
   My bibliography  Save this article

Development of Dose‐Response Models to Predict the Relationship for Human Toxoplasma gondii Infection Associated with Meat Consumption

Author

Listed:
  • Miao Guo
  • Abhinav Mishra
  • Robert L. Buchanan
  • Jitender P. Dubey
  • Dolores E. Hill
  • H. Ray Gamble
  • Jeffrey L. Jones
  • Xianzhi Du
  • Abani K. Pradhan

Abstract

Toxoplasma gondii is a protozoan parasite that is responsible for approximately 24% of deaths attributed to foodborne pathogens in the United States. It is thought that a substantial portion of human T. gondii infections is acquired through the consumption of meats. The dose‐response relationship for human exposures to T. gondii‐infected meat is unknown because no human data are available. The goal of this study was to develop and validate dose‐response models based on animal studies, and to compute scaling factors so that animal‐derived models can predict T. gondii infection in humans. Relevant studies in literature were collected and appropriate studies were selected based on animal species, stage, genotype of T. gondii, and route of infection. Data were pooled and fitted to four sigmoidal‐shaped mathematical models, and model parameters were estimated using maximum likelihood estimation. Data from a mouse study were selected to develop the dose‐response relationship. Exponential and beta‐Poisson models, which predicted similar responses, were selected as reasonable dose‐response models based on their simplicity, biological plausibility, and goodness fit. A confidence interval of the parameter was determined by constructing 10,000 bootstrap samples. Scaling factors were computed by matching the predicted infection cases with the epidemiological data. Mouse‐derived models were validated against data for the dose‐infection relationship in rats. A human dose‐response model was developed as P (d) = 1–exp (–0.0015 × 0.005 × d) or P (d) = 1–(1 + d × 0.003 / 582.414)−1.479. Both models predict the human response after consuming T. gondii‐infected meats, and provide an enhanced risk characterization in a quantitative microbial risk assessment model for this pathogen.

Suggested Citation

  • Miao Guo & Abhinav Mishra & Robert L. Buchanan & Jitender P. Dubey & Dolores E. Hill & H. Ray Gamble & Jeffrey L. Jones & Xianzhi Du & Abani K. Pradhan, 2016. "Development of Dose‐Response Models to Predict the Relationship for Human Toxoplasma gondii Infection Associated with Meat Consumption," Risk Analysis, John Wiley & Sons, vol. 36(5), pages 926-938, May.
  • Handle: RePEc:wly:riskan:v:36:y:2016:i:5:p:926-938
    DOI: 10.1111/risa.12500
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12500
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Teunis & Katsuhisa Takumi & Kunihiro Shinagawa, 2004. "Dose Response for Infection by Escherichia coli O157:H7 from Outbreak Data," Risk Analysis, John Wiley & Sons, vol. 24(2), pages 401-407, April.
    2. Rose, J.B. & Haas, C.N. & Regli, S., 1991. "Risk assessment and control of waterborne giardiasis," American Journal of Public Health, American Public Health Association, vol. 81(6), pages 709-713.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helen E. Clough & Daymian Clancy & Nigel P. French, 2006. "Vero‐Cytotoxigenic Escherichia coli O157 in Pasteurized Milk Containers at the Point of Retail: A Qualitative Approach to Exposure Assessment," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1291-1309, October.
    2. Charles N. Haas, 2002. "On the Risk of Mortality to Primates Exposed to Anthrax Spores," Risk Analysis, John Wiley & Sons, vol. 22(2), pages 189-193, April.
    3. Charles N. Haas, 2002. "Conditional Dose‐Response Relationships for Microorganisms: Development and Application," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 455-463, June.
    4. Jennifer Ekman & Adam Goldwater & Mark Bradbury & Jim Matthews & Gordon Rogers, 2020. "Persistence of Human Pathogens in Manure-Amended Australian Soils Used for Production of Leafy Vegetables," Agriculture, MDPI, vol. 11(1), pages 1-18, December.
    5. Frank J. Loge & Elisabetta Lambertini & Mark A. Borchardt & Hakan Başağaoğlu & Timothy R. Ginn, 2009. "Effects of Etiological Agent and Bather Shedding of Pathogens on Interpretation of Epidemiological Data Used to Establish Recreational Water Quality Standards," Risk Analysis, John Wiley & Sons, vol. 29(2), pages 257-266, February.
    6. Peyton M. Ferrier & Jean C. Buzby, 2013. "The Economic Efficiency of Sampling Size: The Case of Beef Trim," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 368-384, March.
    7. Philip J. Schmidt & Katarina D. M. Pintar & Aamir M. Fazil & Edward Topp, 2013. "Harnessing the Theoretical Foundations of the Exponential and Beta‐Poisson Dose‐Response Models to Quantify Parameter Uncertainty Using Markov Chain Monte Carlo," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1677-1693, September.
    8. Régis Pouillot & Véronique Goulet & Marie Laure Delignette‐Muller & Aurélie Mahé & Marie Cornu, 2009. "Quantitative Risk Assessment of Listeria monocytogenes in French Cold‐Smoked Salmon: II. Risk Characterization," Risk Analysis, John Wiley & Sons, vol. 29(6), pages 806-819, June.
    9. Thu Le-Thi & Phuc Pham-Duc & Christian Zurbrügg & Toan Luu-Quoc & Huong Nguyen-Mai & Tu Vu-Van & Hung Nguyen-Viet, 2017. "Diarrhea risks by exposure to livestock waste in Vietnam using quantitative microbial risk assessment," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 62(1), pages 83-91, February.
    10. Lailai Chen & Helena Geys & Shaun Cawthraw & Arie Havelaar & Peter Teunis, 2006. "Dose Response for Infectivity of Several Strains of Campylobacter jejuni in Chickens," Risk Analysis, John Wiley & Sons, vol. 26(6), pages 1613-1621, December.
    11. Tucker Burch, 2019. "Validation of Quantitative Microbial Risk Assessment Using Epidemiological Data from Outbreaks of Waterborne Gastrointestinal Disease," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 599-615, March.
    12. Gang Xie & Anne Roiko & Helen Stratton & Charles Lemckert & Peter K. Dunn & Kerrie Mengersen, 2017. "Guidelines for Use of the Approximate Beta‐Poisson Dose–Response Model," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1388-1402, July.
    13. B. Chapman & K. Pintar & B. A. Smith, 2018. "Multi‐Exposure Pathway Model to Compare Escherichia coli O157 Risks and Interventions," Risk Analysis, John Wiley & Sons, vol. 38(2), pages 392-409, February.
    14. David L. Holcomb & Mary A. Smith & Glenn O. Ware & Yen‐Con Hung & Robert E. Brackett & Michael P. Doyle, 1999. "Comparison of Six Dose‐Response Models for Use with Food‐Borne Pathogens," Risk Analysis, John Wiley & Sons, vol. 19(6), pages 1091-1100, December.
    15. Christopher Leleu & Jean Menotti & Pascale Meneceur & Firas Choukri & Annie Sulahian & Yves Jean‐François Garin & Jean‐Baptiste Denis & Francis Derouin, 2013. "Bayesian Development of a Dose‐Response Model for Aspergillus fumigatus and Invasive Aspergillosis," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1441-1453, August.
    16. S. R. Petterson, 2016. "Application of a QMRA Framework to Inform Selection of Drinking Water Interventions in the Developing Context," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 203-214, February.
    17. Joseph N. Eisenberg & Edmund Y. W. Seto & Adam W. Olivieri & Robert C. Spear, 1996. "Quantifying Water Pathogen Risk in an Epidemiological Framework," Risk Analysis, John Wiley & Sons, vol. 16(4), pages 549-563, August.
    18. Tucker R. Burch, 2020. "Outbreak‐Based Giardia Dose–Response Model Using Bayesian Hierarchical Markov Chain Monte Carlo Analysis," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 705-722, April.
    19. Gang Xie & Anne Roiko & Helen Stratton & Charles Lemckert & Peter K. Dunn & Kerrie Mengersen, 2016. "A Generalized QMRA Beta‐Poisson Dose‐Response Model," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1948-1958, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:36:y:2016:i:5:p:926-938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.