IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v18y1998i3p309-328.html
   My bibliography  Save this article

Topics in Microbial Risk Assessment: Dynamic Flow Tree Process

Author

Listed:
  • Harry M. Marks
  • Margaret E. Coleman
  • C.‐T. Jordan Lin
  • Tanya Roberts

Abstract

Microbial risk assessment is emerging as a new discipline in risk assessment. A systematic approach to microbial risk assessment is presented that employs data analysis for developing parsimonious models and accounts formally for the variability and uncertainty of model inputs using analysis of variance and Monte Carlo simulation. The purpose of the paper is to raise and examine issues in conducting microbial risk assessments. The enteric pathogen Escherichia coli O157:H7 was selected as an example for this study due to its significance to public health. The framework for our work is consistent with the risk assessment components described by the National Research Council in 1983 (hazard identification; exposure assessment; dose‐response assessment; and risk characterization). Exposure assessment focuses on hamburgers, cooked a range of temperatures from rare to well done, the latter typical for fast food restaurants. Features of the model include predictive microbiology components that account for random stochastic growth and death of organisms in hamburger. For dose‐response modeling, Shigella data from human feeding studies were used as a surrogate for E. coli O157:H7. Risks were calculated using a threshold model and an alternative nonthreshold model. The 95% probability intervals for risk of illness for product cooked to a given internal temperature spanned five orders of magnitude for these models. The existence of even a small threshold has a dramatic impact on the estimated risk.

Suggested Citation

  • Harry M. Marks & Margaret E. Coleman & C.‐T. Jordan Lin & Tanya Roberts, 1998. "Topics in Microbial Risk Assessment: Dynamic Flow Tree Process," Risk Analysis, John Wiley & Sons, vol. 18(3), pages 309-328, June.
  • Handle: RePEc:wly:riskan:v:18:y:1998:i:3:p:309-328
    DOI: 10.1111/j.1539-6924.1998.tb01298.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.1998.tb01298.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.1998.tb01298.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David E. Burmaster & Paul D. Anderson, 1994. "Principles of Good Practice for the Use of Monte Carlo Techniques in Human Health and Ecological Risk Assessments," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 477-481, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Starbird, S. Andrew, 2000. "Designing Food Safety Regulations: The Effect Of Inspection Policy And Penalties For Noncompliance On Food Processor Behavior," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(2), pages 1-20, December.
    2. Louis A. Cox & Douglas A. Popken, 2004. "Quantifying Human Health Risks from Virginiamycin Used in Chickens," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 271-288, February.
    3. David W. Gaylor, 2005. "Risk/Benefit Assessments of Human Diseases: Optimum Dose for Intervention," Risk Analysis, John Wiley & Sons, vol. 25(1), pages 161-168, February.
    4. Charles N. Haas, 2002. "Conditional Dose‐Response Relationships for Microorganisms: Development and Application," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 455-463, June.
    5. Margaret E. Coleman & Sonja Sandberg & Steven A. Anderson, 2003. "Impact of Microbial Ecology of Meat and Poultry Products on Predictions from Exposure Assessment Scenarios for Refrigerated Storage," Risk Analysis, John Wiley & Sons, vol. 23(1), pages 215-228, February.
    6. Peter F. M. Teunis & Nico J. D. Nagelkerke & Charles N. Haas, 1999. "Dose Response Models For Infectious Gastroenteritis," Risk Analysis, John Wiley & Sons, vol. 19(6), pages 1251-1260, December.
    7. Rowena D. Kosmider & Pádraig Nally & Robin R. L. Simons & Adam Brouwer & Susan Cheung & Emma L. Snary & Marion Wooldridge, 2010. "Attribution of Human VTEC O157 Infection from Meat Products: A Quantitative Risk Assessment Approach," Risk Analysis, John Wiley & Sons, vol. 30(5), pages 753-765, May.
    8. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    9. Raymond A. Zilinskas & Bruce Hope & D. Warner North, 2004. "A Discussion of Findings and Their Possible Implications from a Workshop on Bioterrorism Threat Assessment and Risk Management," Risk Analysis, John Wiley & Sons, vol. 24(4), pages 901-908, August.
    10. Harriet Namata & Marc Aerts & Christel Faes & Peter Teunis, 2008. "Model Averaging in Microbial Risk Assessment Using Fractional Polynomials," Risk Analysis, John Wiley & Sons, vol. 28(4), pages 891-905, August.
    11. Hojin Moon & Hyun‐Joo Kim & James J. Chen & Ralph L. Kodell, 2005. "Model Averaging Using the Kullback Information Criterion in Estimating Effective Doses for Microbial Infection and Illness," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1147-1159, October.
    12. Starke, Yolanda & Ralston, Katherine L. & Brent, C. Philip & Riggins, Toija & Lin, Chung-Tung Jordan, 2002. "Consumer Food Safety Behavior: A Case Study In Hamburger Cooking And Ordering," Agricultural Economic Reports 34061, United States Department of Agriculture, Economic Research Service.
    13. Hojin Moon & Steven B. Kim & James J. Chen & Nysia I. George & Ralph L. Kodell, 2013. "Model Uncertainty and Model Averaging in the Estimation of Infectious Doses for Microbial Pathogens," Risk Analysis, John Wiley & Sons, vol. 33(2), pages 220-231, February.
    14. Vincent Tesson & Michel Federighi & Enda Cummins & Juliana de Oliveira Mota & Sandrine Guillou & Géraldine Boué, 2020. "A Systematic Review of Beef Meat Quantitative Microbial Risk Assessment Models," IJERPH, MDPI, vol. 17(3), pages 1-28, January.
    15. David L. Holcomb & Mary A. Smith & Glenn O. Ware & Yen‐Con Hung & Robert E. Brackett & Michael P. Doyle, 1999. "Comparison of Six Dose‐Response Models for Use with Food‐Borne Pathogens," Risk Analysis, John Wiley & Sons, vol. 19(6), pages 1091-1100, December.
    16. Mark R. Powell, 2013. "The Economic Efficiency of Sampling Size: The Case of Beef Trim Revisited," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 385-396, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Chanel, 2022. "Impact of COVID‑19 Activity Restrictions on Air Pollution: Methodological Considerations in the Economic Valuation of the Long‑Term Effects on Mortality [Impact sur la pollution de l’air des restri," Working Papers hal-03778336, HAL.
    2. Charles N. Haas, 1997. "Importance of Distributional Form in Characterizing Inputs to Monte Carlo Risk Assessments," Risk Analysis, John Wiley & Sons, vol. 17(1), pages 107-113, February.
    3. Janssen, Hans, 2013. "Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 123-132.
    4. Timothy M. Barry, 1996. "Recommendations on the Testing and Use of Pseudo‐Random Number Generators Used in Monte Carlo Analysis for Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 16(1), pages 93-105, February.
    5. Olivier Chanel, 2022. "Impact of COVID-19 Activity Restrictions on Air Pollution: Methodological Considerations in the Economic Valuation of the Long-Term Effects on Mortality," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 534-35, pages 103-118.
    6. Frédéric Dor & Pascal Empereur‐Bissonnet & Denis Zmirou & Vincent Nedellec & Jean‐Marie Haguenoer & Frans Jongeneelen & Alain Person & William Dab & Colin Ferguson, 2003. "Validation of Multimedia Models Assessing Exposure to PAHs—The SOLEX Study," Risk Analysis, John Wiley & Sons, vol. 23(5), pages 1047-1057, October.
    7. Robert T. Clemen & Terence Reilly, 1999. "Correlations and Copulas for Decision and Risk Analysis," Management Science, INFORMS, vol. 45(2), pages 208-224, February.
    8. Maria F. Poças & Jorge C. Oliveira & Rainer Brandsch & Timothy Hogg, 2010. "Feasibility Study on the Use of Probabilistic Migration Modeling in Support of Exposure Assessment from Food Contact Materials," Risk Analysis, John Wiley & Sons, vol. 30(7), pages 1052-1061, July.
    9. Michael Greenberg & Charles Haas & Anthony Cox & Karen Lowrie & Katherine McComas & Warner North, 2012. "Ten Most Important Accomplishments in Risk Analysis, 1980–2010," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 771-781, May.
    10. K. D. M. Pintar & A. Fazil & F. Pollari & D. F. Charron & D. Waltner‐Toews & S. A. McEwen, 2010. "A Risk Assessment Model to Evaluate the Role of Fecal Contamination in Recreational Water on the Incidence of Cryptosporidiosis at the Community Level in Ontario," Risk Analysis, John Wiley & Sons, vol. 30(1), pages 49-64, January.
    11. Per Sander & Bo Bergbäck & Tomas Öberg, 2006. "Uncertain Numbers and Uncertainty in the Selection of Input Distributions—Consequences for a Probabilistic Risk Assessment of Contaminated Land," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1363-1375, October.
    12. Olivier Chanel & Laura Perez & Nino Künzli & Sylvia Medina, 2016. "The hidden economic burden of air pollution-related morbidity: evidence from the Aphekom project," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 17(9), pages 1101-1115, December.
    13. Myung-Hun Kim & Eul-Bum Lee, 2019. "A Forecast Model for the Level of Engineering Maturity Impact on Contractor’s Procurement and Construction Costs for Offshore EPC Megaprojects," Energies, MDPI, vol. 12(12), pages 1-18, June.
    14. Myung-Hun Kim & Eul-Bum Lee & Han-Suk Choi, 2019. "A Forecast and Mitigation Model of Construction Performance by Assessing Detailed Engineering Maturity at Key Milestones for Offshore EPC Mega-Projects," Sustainability, MDPI, vol. 11(5), pages 1-21, February.
    15. Martí Nadal & Vikas Kumar & Marta Schuhmacher & José L. Domingo, 2008. "Applicability of a Neuroprobabilistic Integral Risk Index for the Environmental Management of Polluted Areas: A Case Study," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 271-286, April.
    16. Serkan Erbis & Zeynep Ok & Jacqueline A. Isaacs & James C. Benneyan & Sagar Kamarthi, 2016. "Review of Research Trends and Methods in Nano Environmental, Health, and Safety Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 36(8), pages 1644-1665, August.
    17. Charles N. Haas, 1999. "On Modeling Correlated Random Variables in Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 19(6), pages 1205-1214, December.
    18. Ning Qin & Ayibota Tuerxunbieke & Qin Wang & Xing Chen & Rong Hou & Xiangyu Xu & Yunwei Liu & Dongqun Xu & Shu Tao & Xiaoli Duan, 2021. "Key Factors for Improving the Carcinogenic Risk Assessment of PAH Inhalation Exposure by Monte Carlo Simulation," IJERPH, MDPI, vol. 18(21), pages 1-14, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:18:y:1998:i:3:p:309-328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.